Abstracts of Master Theses
Presented in February 2009
Preface

Master theses of Department of International Development Engineering, Tokyo Institute of Technology were presented successfully on August 1, 2008 and February 13, 2009. This technical report consists of the abstracts of those theses.
Table of Contents

1. **Practical detection issues of spectrum sensing for cognitive radio systems**
 Sabita Maharjan KHADKA
2. **Semi machine translation system based on collective intelligence**
 Takuya ISHIBASHI
3. **Study of antenna radiation efficiency by computer simulation**
 Shigeo YAMADA
4. **Determination of parameters for compacted soil and its application to stability analysis**
 Shinichi WATANABE
5. **The application of macro-element method to analysis for behavior of soft ground improved by vertical drains**
 Aki ARAI
6. **Effect of initial water curing period on chloride permeability of hardened blast furnace cement**
 Shohei KIMURA
7. **Development of new approach to prepare CoMo/Al2O3 catalyst for deep hydrodesulphurization**
 Tatsuya KUSAMA
8. **Modeling of sand transportation using long-term observed datasets in the semi-arid shrub desert**
 Yumi KONDO
9. **Permeation of coal tar absorption oil through ionic liquid supported liquid membrane**
 Yoshiyuki SHIMADA
10. **PIV measurements of atmospheric turbulence within and above an outdoor urban scale model**
 Hiroshi TAKIMOTO
11. **Mechanism of ammonia nitrogen uptake by sterile Ulva sp. and its application to water quality control for intensive shrimp culture pond in developing country**
 Shin TAJIRI
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of probability density estimation for mahalanobis metric in</td>
<td>Toshinori NAKAMOTO</td>
<td>45</td>
</tr>
<tr>
<td>vector space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagrangian human meteorology</td>
<td>Makoto NAKAYOSHI</td>
<td>49</td>
</tr>
<tr>
<td>Influence of mixing γ-C2S on Cl- penetration in concrete cured using</td>
<td>Masayo HORIOKA</td>
<td>53</td>
</tr>
<tr>
<td>autoclave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid-liquid extraction rate of coal tar absorption oil in a</td>
<td>Toshiya MASUDA</td>
<td>57</td>
</tr>
<tr>
<td>continuous countercurrent spray column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction of text area using scale invariant feature transform</td>
<td>Jo MATSUDA</td>
<td>61</td>
</tr>
<tr>
<td>Correlation analysis of coherent turbulence over reduced urban model</td>
<td>Ayako MARUYAMA</td>
<td>65</td>
</tr>
<tr>
<td>System to make teaching materials based on collective intelligence</td>
<td>Mandana Amir KHOSRAVI</td>
<td>69</td>
</tr>
<tr>
<td>The property of dislocation motion tracks which formed in</td>
<td>Chao HU</td>
<td>73</td>
</tr>
<tr>
<td>deformation of aluminum and influence on the dislocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LES study on hierarchical turbulence organized structure above urban</td>
<td>Jin ZHANG</td>
<td>77</td>
</tr>
<tr>
<td>canopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact of angular power spectrum (APS) on the achievable diversity</td>
<td>Elnaz Foroughi SHAFIEI</td>
<td>81</td>
</tr>
<tr>
<td>gain and MIMO capacity in a mobile terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The applicability of one-dimensional & two-dimensional soil/water</td>
<td>Longtao YOU</td>
<td>85</td>
</tr>
<tr>
<td>coupled analysis in settlement prediction of embankment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental study on adhesion behavior between rough surfaces of</td>
<td>Lei LEI</td>
<td>89</td>
</tr>
<tr>
<td>solid bodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenols-polluted water treatment using enzyme and recovery of free</td>
<td>He LI</td>
<td>93</td>
</tr>
<tr>
<td>enzyme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction

The radio frequency spectrum is a precious natural resource. With the increasing bandwidth requirements of the current and emerging wireless services, the effective and efficient management of spectrum has been realized as a serious issue. However many current systems do not seem to utilize the allocated spectrum fully and efficiently. So, dynamic access and utilization of spectrum is necessary. Cognitive radio has been proposed as the means to promote efficient use of spectrum by exploring the existence of spectrum holes. The key challenge of spectrum sensing is the approach is also fair in the sense that the responsibility of the secondary system to sense the signal from the primary system if it wants to use the spectrum. The key challenge of spectrum sensing is the detection of weak signals in presence of noise and interference with a very small probability of misdetection.

The first application of spectrum sensing was studied by IEEE 802.22 Standard Working Group. The IEEE 802.22 WG proposed to standardize a fixed wireless access system based on cognitive radio technology to enable spectrum access and sharing by the secondary system. This standard is called IEEE 802.22 Wireless Regional Area Network (WRAN). The IEEE 802.22 WRAN aims to provide the wireless broadband access to rural areas as well as to sub-urban areas where the spectrum utilization rate is quite low.

Energy detector is the simplest detector proposed for cognitive radio so far. Even though the number of literatures are increasing on the analysis of various detectors for cognitive radio, there has been relatively less work in the analysis of practical aspects of the system. The effect of crucial signal processing blocks such as analog to digital converter and crucial elements of system modeling such as noise uncertainty etc. have not yet been explored much. Therefore, there is a crucial need of detailed analysis of signal processing for energy detector as a cognitive radio receiver.

The rest of the paper is organized as following. Firstly an economic energy detector prototype using off-the-shelf instruments has been proposed for cognitive radio system in section 2. The detection performance has been investigated with and without considering the effect of quantization in section 3. The effect of noise uncertainty in the detector performance has been explored in section 4. Finally, section 5 concludes the paper.

2 Spectrum Sensing Technique

2.1 Neyman-Pearson Detection

Let us assume that a known deterministic signal $s[n]$ is corrupted by additive white Gaussian noise (receiver noise) $w[n]$ with zero mean and variance $\sigma_w^2[2]$. Then, the received signal $x[n]$ will have either of the following two forms:

$$H_0 : x[n] = w[n] \quad \text{signal is absent,}$$

$$H_1 : x[n] = h[n]s[n] + w[n] \quad \text{signal is present,}$$

where $n = 1, 2, \ldots, N$ is the discrete time index, N is the number of samples considered and $h[n]$ is the linear time varying characteristic of the propagation channel. Assuming that the distribution of signal samples $s[n]$ is a Gaussian random process with zero mean and variance σ_s^2, the decision statistic of Neyman-Pearson (NP) approach is to determine between the hypotheses H_0 and H_1 based on the observations of $X = [x[1] x[2] \ldots x[N]]^T$. The decision statistic of NP detector is given by

$$T = \Re[\sum_{n=1}^{N} x[n]s^*[n]]$$

If the signal is absent, the decision statistic follows a central chi-square distribution with N degrees of freedom. If the signal is present, it follows a non-central chi-square distribution. Under either hypothesis, as long as N is large enough, since $x[n]$ is Gaussian and since T is a linear combination of Gaussian random variables, T is also Gaussian. So, based on the central limit theorem, the distribution of T can be approximated as Gaussian i.e.

$$\begin{cases}
H_0 : T \sim \mathcal{N}(\mu_0, \sigma_0^2) \\
H_1 : T \sim \mathcal{N}(\mu_1, \sigma_1^2)
\end{cases}$$

where the received signal $x[n]$ can be both real (passband) or complex valued (baseband) with the same power.

Footnote: In this case the considered detector is the matched filter for which the incoming signal structure is known beforehand.
2.2 Energy Detector

Energy detection is a signal detection mechanism based on NP approach [2] [3]. The NP detector computes the energy of the received signal and compares it to the threshold in order to determine whether or not the signal from the primary system is present. The decision value of the energy detector is given by,

\[T = \sum_{n=1}^{N} |x[n]|^2. \]

(5)

The probability of false alarm (\(P_{FA} \)) and the probability of detection (\(P_D \)) of energy detector are given by

\[P_{FA} = Q\left(\frac{\gamma - N\sigma_w^2}{\sqrt{N\sigma_w^4}} \right), \]

(6)

\[P_D = Q\left(\frac{\gamma - N(\sigma_w^2 + \sigma_s^2)}{\sqrt{N(\sigma_w^2 + \sigma_s^2)^2}} \right). \]

(7)

for complex valued signal. The energy detector can meet any desired \(P_D \) and \(P_{FA} \) simultaneously if the number of samples \(N \) is not limited provided that \(w[n], s[n] \) as well as \(h[n] \) are modelled as stationary and ergodic random processes. In reality however, these processes are neither stationary nor ergodic. So, for a practical system, the robustness of the system towards various issues and errors should be carefully investigated in order to ensure that the detector performance is acceptable.

2.3 Energy Detector Prototype

Though the number of literatures regarding the performance evaluation of detectors for cognitive radio system is increasing, the crucial need of the experimental study still persists to explore the feasibility and the practical performance limits of the detectors under real noise and interference conditions in wireless channels. So, it is our motivation to propose a detector prototype for cognitive radio receiver feasible to work in practical environment. Our proposed detector model is shown in Figure 1. It comprises of off-the-shelf instruments which make it versatile, economic as well as frequency agile.

![Figure 1: Block diagram of the prototype to implement energy detector](image)

The low noise amplifier is used to decrease the overall noise figure of the system. The attenuator is used in order to prevent overloading in case of strong signals. If the RF signal be directly fed to the ADC, the sampling frequency is supposed to be very high. So, the mixer in spectrum analyzer is used to down-convert the RF signal. The output of spectrum analyzer is the intermediate frequency (IF) signal. Once the RF signal is converted to IF signal, all the signal processing can be done in IF range. The signal is then fed to the analog to digital converter (ADC) which performs sampling and quantization of the IF signal in order to use the data for analysis in the data acquisition system. In this prototype, PC is the data acquisition system in which the energy of the quantized samples is computed, the threshold is determined and the hypotheses are compared to determine the presence/absence of the primary signal.

3 Effect of Quantization on Detection Performance

3.1 Background

Most of the literatures about the analysis of detection performance of cognitive radio receiver consider the detection performance based on actual samples. In reality however, the performance depends on the quantized samples, not on the actual samples. So, it is our motivation to explore the effect of quantization on the performance of energy detector.

3.2 System Model

Figure 2 shows the low pass model of cognitive radio receiver. All blocks of the receiver except ADCs are assumed to be linear [4] and the sampling time is assumed to have no jitter. So, the signal at the filter output is given by

\[x(t) = s(t) + n(t) \]

(8)

where \(s(t) \) and \(n(t) \) are the signal and noise component respectively.

![Figure 2: Model of the Receiver](image)

Though the amplifier gain \(\alpha \) can be automatically controlled in practical systems, in this study, it is assumed to be fixed to analyze its effect [4]. Let us assume that the input to the ADC is normalized and that the full scale range (FSR) of the ADC is \(\pm 1 \). If the amplitude of the input to the ADC is within the FSR, the error is given by
Table 1: Parameters of the ISDB-T signal used for simulation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective symbol length (T_u)</td>
<td>252 μs</td>
</tr>
<tr>
<td>Guard interval (T_g)</td>
<td>$\frac{T_u}{2} = 63$ μs</td>
</tr>
<tr>
<td>Symbol duration (T_s)</td>
<td>315 μs</td>
</tr>
<tr>
<td>Number of symbols</td>
<td>20</td>
</tr>
<tr>
<td>Total duration</td>
<td>6.3 ms</td>
</tr>
<tr>
<td>Number of carriers</td>
<td>1405</td>
</tr>
<tr>
<td>Total bandwidth</td>
<td>5.575 MHz</td>
</tr>
<tr>
<td>Sampling frequency</td>
<td>16.254 MHz</td>
</tr>
</tbody>
</table>

\[|e_q[k]| < \frac{\Delta_q}{2}, \tag{9} \]

where Δ_q is the stepsize of quantization given by

\[\Delta_q = \frac{2}{2^M - 1}, \tag{10} \]

where M is the number of bits used for quantization. If the amplifier gain is too large such that the input does no more fit within the FSR, clipping occurs hence increasing the error beyond what is given by (9).

3.3 Simulation Results

The ISDB-T signal was generated following the description given in [5] to analyze the effect of quantization assuming Mode 1. The spectrum of the generated ISDB-T signal is shown in Figure 3. The parameters of the generated signal are given in Table 1.

![Figure 3: Spectrum of the generated ISDB-T signal](image)

Figure 4 shows the effect of quantization noise and clipping. The performance is optimum within certain range of α. For lower values of α, the probability of detection can be drastically improved by increasing the number of bits of ADC because in this case quantization error is dominant. On the other hand, for higher values of α, increasing the number of bits does not help because the clipping noise becomes dominant in this case. Therefore, the trade-off should be made so that the detection performance is least affected.

Figure 4: Effect of Quantization and Clipping Errors ($N = 1024$, $SNR = -9$ dB, $P_{FA} = 1\%$)

4 Noise Uncertainty

4.1 Background

Most of the literatures about cognitive radio detectors assume that the background noise is additive white Gaussian and that the variance is exactly known, which is most of the time not the case in real environment. So, it is our motivation to explore the effect of noise uncertainty in the detection performance of energy detector.

4.2 Evaluation

Let $s(t)$ denote a band-limited primary signal with a total bandwidth of B. Let h be the fading process, and let $w(t)$ be the additive noise process. Let us assume that the received signal (with additive noise) is sampled ideally at Nyquist rate. A stationary white Gaussian assumption for background noise is only an approximation. So, let us model the noise process $w[n]$ to have any distribution W from a set of possible distributions \mathcal{W}. This set is called the noise uncertainty set. Fading is modeled in similar manner. The fading process $H \in \mathcal{H}_f$ is considered a possibly random linear time-varying filter response. Similarly, let us denote the set of distributions for S as \mathcal{S}_p. Although the actual noise variance might vary over distributions in the set \mathcal{W}, let us assume that there is a single nominal noise variance σ_n^2 associated with the noise uncertainty set \mathcal{W}. By convention, we consider all the $S \in \mathcal{S}_p$ to share the same average variance σ_n^2.

Because the energy detector evaluates the detection performance based on energy of the incoming signal, the distributional uncertainty of noise can be summarized in a single interval $\sigma_n^2 \in [\sigma_n^2 - \rho, \sigma_n^2 + \rho]dB$ where $\rho > 0$ dB is a parameter that quantifies the size of the noise uncertainty.

Now including the effect of noise uncertainty as described in [6], P_{FA} and P_D are given by

\[P_{FA} = Q\left(\frac{\gamma - N \rho \sigma_n^2}{\sqrt{N \rho^2 \sigma_n^2}}\right) \tag{11} \]
\[P_D = Q\left(\frac{\gamma - N\left(\frac{1}{\rho} \sigma_n^2 + \sigma_s^2\right)}{N\sigma_n^2 + \sigma_s^2}\right) \] \hspace{1cm} (12)

for baseband signal where \(\rho \) is considered in linear scale.

4.3 Simulation Results

For the simulation results that follow, the ISDB-T signal as described in section 3 was used.

Figure 5 shows the performance of energy detector for different values of noise uncertainty \(\rho \). As the value of \(\rho \) increases, the performance degrades. For example, when the noise uncertainty is 1 dB, the detector does not work below an SNR of \(-8 \) dB. For \(\rho = 5 \) dB, the detector does not work even for higher values of SNR.

Figure 6 shows the variation of the probability of detection with sensing time for different values of the noise uncertainty \(\rho \). From this figure, it can be seen that the detection performance improves as sensing time increases. However when the noise uncertainty is as big as 1 dB, the detector performance is rendered by the uncertainty and hence it does not work.

![Figure 5: Detection Performance for different values of \(\rho \) (\(N = 1024, P_{FA} = 1\% \))](image)

![Figure 6: Detection Performance for different values of \(\rho \) (SNR = \(-9 \) dB, \(P_{FA} = 1\% \))](image)

5 Conclusion

In this paper, an energy detector prototype using off-the-shelf instruments was proposed for cognitive radio system. As ADC is one of the most important signal processing units in cognitive radio receiver, the performance of energy detector was explored considering the effect of quantization and clipping. The effect of quantization was clearly pronounced in the detection performance of energy detector. Although the effect of quantization is unavoidable in any practical detector, there are ways to tackle its effect by proper modelling and design of the instruments. For example, if the dynamic range required for the detector is too high, using sufficient number of bits for quantization will increase the resolution of the system and hence minimize the quantization error. Though increasing the number of bits does not help much in reducing the clipping error, it might not be severe as long as the system can maintain fairly high dynamic range with sufficient number of bits. On the other hand, if the expected signal level input to the receiver has moderate dynamic range, using relatively less number of bits may be enough for fair performance which is saving in terms of hardware requirement.

As real noise is neither white nor its variance is exactly known in actual systems, the effect of noise uncertainty was also investigated in the detection performance of energy detector. The simulation results reflected that the detector becomes nonrobust below certain values of SNR depending on the noise uncertainty of the system.

References

1 INTRODUCTION

A lot of people in the world participate in the Wiki system project. Wiki system, such as Wikipedia, provides sustainedly useful information in various fields such as study and life. However, the present Wiki system has a problem that it is necessary to prepare at least one document for each language. For solving this problem and getting information in many languages from one document, machine translation is necessary. But, the present machine translation is not free from errors in structural analysis and mean analysis. For the reason, even if it can be used as a support tool, the system is not practiced. In this research, I propose an XML document called ADAM (Auxiliary Description to Attach Meaning) which has the information of grammar and meaning. I developed a supporting tool to describe an ADAM document aiming sustainable production of ADAM document based on collective intelligence.

2 BACKGROUNDS

2.1 Collective Intelligence

Collective Intelligence is often used as the word stands for sets of intelligence by many people. But, it means essentially the notion of the wisdom of crowds. [1] By the birth of Internet, it is easy for a lot of people to deliver contents using the Collective Intelligence and participate in that contents. Now Wiki system and Blog provide various and useful information using the Collective Intelligence.

2.1.1 Wiki

Wiki [2] is a kind of system rewriting a hyper text document on a web server by using web browser. The software which is used by this system and all documents made by using this system are called Wiki. The followings are the features of Wiki.

1. It is able to change and save documents for anyone and at anytime and anywhere on Internet.
2. The tool needed to change a document is only a web browser.
3. The rule to make-up a document at Wiki is only a web browser.
4. It is easy to link between documents in same Wiki system. Therefore, we can make a complex set of documents easily.
5. Various documents can be seen and changed without registering, user account or an advance permission if a person can access the Wiki server.

Wikipedia is the most famous Wiki system. Document in 229 languages exist in Wikipedia. English project is the biggest project and has about 1.4 billion word. Japanese project has 260 thousand word. But, it has problem that the substances of content and the quantities of information are different among languages. One of solutions to overcome the problem is machine translation. It may improve the quality and quantity of Wikipedia as Collective Intelligence.
2.2 Machine Translation

Machine translation is to translate a text in a language into one in another language automatically. As a practical service, there are the translation software for computer and translation service on Internet. But it is very difficult to translate a sentence precisely, because natural language is used by missing words and has many synonym.

2.2.1 Problem of Machine Translation

A computer is not able to understand the meaning of words different from a human. For this reason, a computer translates a sentence only by processing information of construction of a sentence. Then, following problems occur in machine translation. Figure 1 is an example of mistake in machine translation.

- In the analysis process of construction of a sentence
 - Error in the analysis process of structure
 Relationship between a subjective and a predicate is wrong.
 - Error in the analysis process of meaning
 Analysis of the meaning of each word is wrong.
 - Error in the analysis process of context
 Analysis of context is wrong or context is neglected.
- In the transformation and generation process
 - Error in the generation process
 The order of words in translation is wrong.
 - Error in the transformation process
 Expression of a word in translation is not appropriate.

3 Semi Machine Translation System with Adam Document

I propose the ADAM (Auxiliary Description to Attach Meaning) document that is an XML document and has additional information of grammar and meaning for machine translation. There are many mistakes in machine translation. Then, it is very difficult that a person correct the translation. Therefore, it is efficient for a person to give the information of grammar to translation machine.

3.1 ADAM Document

Additional information of ADAM document consists of a sentence, grammar and meaning. Error on machine translation is due to the analysis process of a sentence and its meaning. For the reason, the ADAM document provides the information in the part of analysis process. Detail of each information is mentioned in followings.

- Information of construction of a sentence
 It describes the information in the analysis process of structure. This information is based on English grammar. The construction of a sentence is composed of clause and phrase. The information is composed of subjective phrase (clause), verb phrase, adjective phrase (clause) and adverb phrase (clause). The construction of clause is composed of clause and phrase. The construction of phrase is composed of phrase only.
- Information of grammar
 It describes the grammar information of each word. For example, a part of speech, tense, singular or plural and so on.
- Information of meaning
 It describes the meaning of each word.

ADAM document is a type of XML document. Figure 2 is an example of ADAM document. The example sentence is ’My name is Tom.’ The meaning of a tag is shown in APPENDIX Table 1. The ADAM Document starts from the <ADAM> tag. A sentence is surrounded by the <sentence> tag. For information of tag, construction of a sentence, information of grammar, information of meaning are described in order. In the last section, the original form of the word is written.

3.2 Editing Tool for ADAM Document

I develop a support tool for editing the ADAM document. I explain the functions of the tool. Figure 3 illustrates the picture of top window. Figure 4 illustrates the window to attach the information tag of grammar of words.

Function of File Menu
1. Input the original sentence
Figure 2: Example of Adam Document

- Input by keyboard
- Read from text file

2. Read or save the ADAM document
3. Output the ADAM document

Grammar of Word Window

1. Select the word
 It allocates the buttons of words. If one of these buttons is pushed, the corresponding word is selected.
2. Select the part of speech
 It allocates the buttons of parts of speech. If a word is selected, it is attached the information of a part of speech by pushing the button.

Construction of Sentence Window

1. Select a phrase or clause
 It allocates the buttons of a subjective phrase (clause), a verb phrase, an adjective phrase (clause) and an adverb phrase (clause). If the button of a phrase or a clause is pushed, it switches to the state to select the word.
2. Select the word
 If a button of a word is pushed, it is attached the information.

Amend the Word Window

1. Select the word
 It allocates the buttons of words. If one of these buttons is pushed, the corresponding word is selected.
2. Amend
 It amends the selected word to the original form by keyboard.

Information of Meaning Window

1. Select the word
 It allocates the buttons of words. If one of these buttons is pushed, the corresponding word is selected.
2. Select the meaning
 It allocates the meaning from a multi-language dictionary. If a button of meaning is pushed, the information is attached.

I pay the attention to the ability of speed and operation. For being more simple and fast, it can be used only by a mouse.
3.3 Translation Machine System

The translation machine needs to analyze not natural language but an ADAM document. The following functions are necessary.

- Read the ADAM document
- Interpret the ADAM document
 Since the ADAM document is the XML document, only the XML parser is necessary.
- Translate to another language
 Translation rules to another language according to information of an ADAM document is necessary. It translates to another language by the rules.
- Dictionary
 One word has various meanings for many languages in this dictionary in order to translate to various languages.

4 CONCLUSIONS

In this paper, I proposed a semi machine translation system based on collective intelligence in order to obtain more precise translation for the case such as Wikipedia.

As a future work, I need to improve the method to attach tags for decreasing human error and add the function to check the ADAM document easily. Besides, I must develop a translation machine.

REFERENCES

APPENDIX

<table>
<thead>
<tr>
<th>index</th>
<th>name</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ac</td>
<td>adjective clause</td>
</tr>
<tr>
<td></td>
<td>adj</td>
<td>adjective</td>
</tr>
<tr>
<td></td>
<td>adv</td>
<td>adverb</td>
</tr>
<tr>
<td></td>
<td>advc</td>
<td>adverb clause</td>
</tr>
<tr>
<td></td>
<td>advp</td>
<td>adverb phrase</td>
</tr>
<tr>
<td></td>
<td>ap</td>
<td>adjective phrase</td>
</tr>
<tr>
<td></td>
<td>art</td>
<td>article</td>
</tr>
<tr>
<td></td>
<td>aux</td>
<td>auxiliary</td>
</tr>
<tr>
<td>B</td>
<td>be</td>
<td>Be verb</td>
</tr>
<tr>
<td>C</td>
<td>cmd</td>
<td>comparative degree</td>
</tr>
<tr>
<td></td>
<td>conj</td>
<td>conjunction</td>
</tr>
<tr>
<td>D</td>
<td>dem</td>
<td>demonstrative</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>determiner</td>
</tr>
<tr>
<td>F</td>
<td>fut</td>
<td>future</td>
</tr>
<tr>
<td></td>
<td>futpt</td>
<td>future perfect tense</td>
</tr>
<tr>
<td>G</td>
<td>ger</td>
<td>gerund</td>
</tr>
<tr>
<td>I</td>
<td>imp</td>
<td>imperative</td>
</tr>
<tr>
<td></td>
<td>infl</td>
<td>infinitive</td>
</tr>
<tr>
<td></td>
<td>int</td>
<td>interrogative</td>
</tr>
<tr>
<td></td>
<td>intr</td>
<td>intransitive</td>
</tr>
<tr>
<td>N</td>
<td>n</td>
<td>noun</td>
</tr>
<tr>
<td></td>
<td>neg</td>
<td>negative</td>
</tr>
<tr>
<td>O</td>
<td>onc</td>
<td>objective noun clause</td>
</tr>
<tr>
<td></td>
<td>onp</td>
<td>objective noun phrase</td>
</tr>
<tr>
<td>P</td>
<td>p</td>
<td>past</td>
</tr>
<tr>
<td></td>
<td>per</td>
<td>person</td>
</tr>
<tr>
<td></td>
<td>pl</td>
<td>plural</td>
</tr>
<tr>
<td></td>
<td>pos</td>
<td>possessive</td>
</tr>
<tr>
<td></td>
<td>posd</td>
<td>positive degree</td>
</tr>
<tr>
<td></td>
<td>pp</td>
<td>past participle</td>
</tr>
<tr>
<td></td>
<td>ppt</td>
<td>past perfect tense</td>
</tr>
<tr>
<td></td>
<td>prep</td>
<td>preposition</td>
</tr>
<tr>
<td></td>
<td>pres</td>
<td>present</td>
</tr>
<tr>
<td></td>
<td>presp</td>
<td>present participle</td>
</tr>
<tr>
<td></td>
<td>prespt</td>
<td>present perfect tense</td>
</tr>
<tr>
<td></td>
<td>pro</td>
<td>proverb</td>
</tr>
<tr>
<td></td>
<td>pron</td>
<td>pronoun</td>
</tr>
<tr>
<td></td>
<td>prop</td>
<td>proper</td>
</tr>
<tr>
<td>R</td>
<td>rel</td>
<td>relative</td>
</tr>
<tr>
<td>S</td>
<td>sg</td>
<td>singular</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>sign of end</td>
</tr>
<tr>
<td></td>
<td>snc</td>
<td>subjective noun clause</td>
</tr>
<tr>
<td></td>
<td>snp</td>
<td>subjective noun phrase</td>
</tr>
<tr>
<td></td>
<td>sub</td>
<td>subjunctive</td>
</tr>
<tr>
<td></td>
<td>supd</td>
<td>superlative degree</td>
</tr>
<tr>
<td>T</td>
<td>tran</td>
<td>transitive</td>
</tr>
<tr>
<td>U</td>
<td>u</td>
<td>usual</td>
</tr>
<tr>
<td>V</td>
<td>v</td>
<td>verb</td>
</tr>
<tr>
<td></td>
<td>vp</td>
<td>verb phrase</td>
</tr>
</tbody>
</table>
Study of Antenna Radiation Efficiency by Computer Simulation

Student Number: 06M51326 Name: Shigeo YAMADA Supervisor: Jun-ichi TAKADA

1 Introduction

There are a lot of parameters to represent the characteristics of the antenna. The radiation efficiency is one of them. The radiation efficiency is the ratio of radiated power from the antenna to the input power to the antenna. It is a most important parameter for the mobile terminal antenna as the size of the antenna is limited which leads the degradation of the efficiency. The radiation efficiency is defined as

\[\eta = \frac{P_{\text{radiation}}}{P_{\text{accepted}}} \]

However, it is known that the measurement of the radiation efficiency is rather difficult. The input power \(P_{\text{accepted}} \) can be easily evaluated by measuring the reflection coefficient, but the radiated power \(P_{\text{radiated}} \) should be evaluated by measuring the electromagnetic field radiated to all the directions. This straightforward approach is called the radiated power integration method. Although the method is most popular, an anechoic chamber and a spherical antenna positioner are needed for the measurement, and it is very time consuming in measuring the whole solid angles. Alternatively, a simpler method known as the Wheeler method is often used. In the Wheeler method, the radiation efficiency is estimated by comparing the reflection coefficients of the antenna when it is set up in a free space and when it is covered with a conductive cap. This method needs only a conductor cap and a network analyzer, but no anechoic chamber nor spherical antenna positioner. Therefore, this method is advantageous from the viewpoint of cost and measurement time. However, Wheeler method has the following limitations:

- The antenna should be within the radian sphere, i.e. the sphere of \(1/2\pi \) wavelength in radius.
- The wall of the cap should be placed further than the radian length, i.e. \(1/2\pi \) wavelength, from the antenna.

The mobile terminal antenna may be integrated into the handset. In the case, the measurement condition is relaxed as:

- The measured antenna size is in the order of half wavelength.

Unfortunately, Wheeler method does not always provide the good estimate of the radiation efficiency. This study investigate the mechanism of error in the Wheeler cap method to clarify the applicability.

2 Wheeler Cap Method and Problem Statement

The equivalent circuit proposed by Wheeler [1] is shown in Fig. 1. The power is represented as the resistance in the equivalent circuit. When the antenna is placed in the free space, the loss and the radiation are represented as two series resistors \(R_{\text{loss}} \) and \(R_{\text{radiation}} \).

On the other hand, only the radiation resistance is short-circuited when the antenna is capped as the radiation power does not exist.

The radiation efficiency is calculated from these equivalent circuits as follows [2] [3]. Where \(\Gamma_{\text{cap}} \) and \(\Gamma_{\text{free}} \) are the reflection coefficients of the antenna with and without the cap. In this study \(\eta_w \) is called the Wheeler efficiency, in comparison with the true radiation efficiency.

\[\eta_w = \frac{R_{\text{radiation}}}{R_{\text{radiation}} + R_{\text{loss}}} \]

\[= 1 - \frac{1}{1 - |\Gamma_{\text{cap}}|^2} \]

\[\eta_w = 1 - \frac{|\Gamma_{\text{cap}}|^2}{1 - |\Gamma_{\text{free}}|^2} \]
It is known that the Wheeler efficiency does not always coincide with the radiation efficiency. When the cap is resonant, strong electromagnetic field is generated inside the cap and the radiated power is not reflected by the cap to the feed. When the antenna is near resonant, the dip of the efficiency is often observed, although the reason is not clear. As the antenna is usually used around the resonant frequency, this is a serious problem.

3 Simulation

3.1 Simulation Condition

A microstrip antenna is chosen for the study. The current distribution and the reflection coefficient are calculated by using the commercial electromagnetic simulator Ansoft HFSS [4], which utilizes the finite element method as the solver of the Maxwell’s equation.

The structure of the microstrip antenna is shown in Fig. 2. The antenna consists of two parallel conductor plates with different sizes. The top plate is sized 25 mm × 18 mm × 0.5 mm in (X,Y,Z) directions. The bottom plate is sized 50 mm × 28 mm × 0.5 mm. The plates are made of copper with the conductivity of 5.8 × 10^7 S/m. The dielectric substrate of 1.6 mm thickness in Z direction is placed between to conductors. The substrate is made of Duroid, whose relative permittivity is 2.2 and the dielectric loss tangent is 0.0009. The target system is IMT-Advanced. The antenna is fed by the coaxial cable. The diameter of the inner conductor is 1.78 mm, and the inner diameter of the outer conductor is 2.055 mm. The thickness of the outer conductor is 1 mm. The characteristic impedance of the coaxial cable is designed to be 50 Ω. The feed point of the top conductor is offset at 8 mm along X direction from the corner of the top conductor. The size of the analytical space truncated by the absorbing boundary condition is sized 65 mm × 60 mm × 60 mm in (X,Y,Z) directions. The cap is made of perfect conductor to distinguish the loss of the antenna from the loss of the cap. The cap is sized 65 mm × 60 mm × 40 mm in (X,Y,Z) directions.

3.2 Radiation Efficiency

The simulation results are shown from Fig. 3 to Fig. 8. The magnitude of the reflection coefficient calculation is shown in Fig. 3. The antenna is resonance at 3.85 GHz. Fig. 4 compares the radiation efficiency and Wheeler efficiency. The very deep dip A is due to the resonant of the cap. In the frequency range B, the radiation efficiency and the Wheeler efficiency are in good agreement. In the frequency range C, which is around the resonance frequency of the antenna, the Wheeler efficiency does not represent the radiation efficiency.

3.3 Current Distribution

Fig. 5 - 8 show the surface current distribution of the bottom conductor of the patch antenna. The real part of the current distribution consists of the element that contributes to the radiation. The imaginary part of the current distribution contributes to storage of the reactive energy. The Conductor loss dissipated on the antenna is represented by the magnitude of current distribution. Fig. 5 shows the current distribution in free space at 3.60 GHz which is sampled within range B. The real part of the current has decreased more than the imaginary part because the radiation is suppressed. Fig. 6 shows the current distribution when covered with the cap. It is shown that the real part of the current has decreased obviously compared to the current distribution in free
space. It can be interpreted that the radiative component was suppressed by the cap according to Wheeler’s expectation. On the other hand, imaginary part is not changed. This shows that a reactive component is not seriously influenced.

Fig. 7 and 8 show the current distributions at 3.96 GHz, which is sampled within the range C where the Wheeler efficiency exhibits large error due to the unknown reason. Fig. 8 shows that the magnitude of the current has decreased when the antenna is capped. However, the similarity of the shape of current distribution is still preserved. Therefore, the error is not due to the change of the current distribution, which violates the Wheeler’s assumption.

3.4 Impedance

Equation 3 based on Wheeler’s assumption. It does not consider the change in the current without adjustment of impedance. New equation that introduces this element is derived as follow.

It assume that equivalent circuit exist like Fig. 9.

In this case, E is an input voltage. A new equivalent circuit for computing the radiation efficiency mention below.

$$\eta_w = \frac{\frac{1}{2} \left(\frac{E}{R_{\text{rad}}} \right)^2 R_{\text{loss}} + \frac{1}{2} \left(\frac{E}{R_{\text{rad}}} \right)^2 R_{\text{rad}}}{R_{\text{rad}} + R_{\text{loss}}} = \frac{R_{\text{loss}}}{R_{\text{rad}} + R_{\text{loss}}}$$

(4)

Reflection coefficient Γ_{free} without cap becomes,

$$\Gamma_{\text{free}} = \frac{R_{\text{cir}} R_{\text{rad}} - R_{\text{cir}}}{R_{\text{loss}} R_{\text{rad}} + R_{\text{cir}}}$$

(5)

In a similar way, reflection coefficient Γ_{cap} with cap becomes,

$$\Gamma_{\text{cap}} = \frac{R_{\text{loss}} - R_{\text{cir}}}{R_{\text{loss}} + R_{\text{cir}}}$$

(6)

When these two expressions are transformed, the following relational expressions are obtained.

$$R_{\text{cir}} \left(\frac{1}{R_{\text{loss}}} + \frac{1}{R_{\text{rad}}} \right) = \frac{1 - \Gamma_{\text{free}}}{1 + \Gamma_{\text{free}}}$$

(7)

$$R_{\text{loss}} \frac{R_{\text{cir}}}{R_{\text{cir}} + R_{\text{rad}}} = \frac{1 - \Gamma_{\text{cap}}}{1 + \Gamma_{\text{cap}}}$$

(8)

Therefore, if this relational expression is substituted in equation 4, the radiation efficiency becomes,

$$\eta_w = \frac{R_{\text{loss}}}{R_{\text{loss}} + R_{\text{rad}}} = \frac{R_{\text{loss}} + R_{\text{rad}} - R_{\text{loss}}}{R_{\text{loss}} + R_{\text{rad}}}$$

(9)

$$= 1 - \frac{R_{\text{rad}}}{R_{\text{loss}} + R_{\text{rad}}} = 1 - \frac{R_{\text{cir}} R_{\text{rad}}}{R_{\text{cir}} R_{\text{rad}} + R_{\text{loss}}}$$

(10)

$$= 1 - \frac{(1 - \Gamma_{\text{cap}})(1 + \Gamma_{\text{free}})}{(1 + \Gamma_{\text{cap}})(1 - \Gamma_{\text{free}})}$$

(11)

$$= 1 - \frac{1 - |\Gamma_{\text{cap}}|^2 (1 + \Gamma_{\text{free}})^2}{1 - |\Gamma_{\text{free}}|^2 (1 + \Gamma_{\text{cap}})^2}$$

(12)
It is easy to compare the new formulation with the traditional wheeler efficiency using an existing reflection coefficient.

Fig. 10 shows the comparison between proposed expression. "Weff" shows traditional Wheeler efficiency as explained section 3.2. "Weff2" shows traditional Wheeler efficiency with resized cap. The cap size is 60 mm × 65 mm × 40 mm. Two result show that the radiation efficiency has depressed, the part where the error has occurred. However, The other part is nearly correct. "New_eff" and "New_eff2" show the results of proposed wheeler efficiency. "New_eff" is better than "Weff" at the part where the error has occurred. But in other part, "Weff" is better than "New_eff". "New_eff2" shows considerable result. This difference may be caused by the influence of the reflection that due to the disagreement of impedance. In other word, the change in the current is not considered in traditional expression.

4 Conclusions
The Wheeler method was examined for the patch antenna based on the simulation. The current distribution in the frequency, where the error of the radiation efficiency has occurred without clear reason, was made visible with the simulator. In addition, We proposed the expression that was able to allow the change in impedance. Moreover, it can be applied in a part of the band where the error has occurred in the calculation.

References
Determination of Material Parameters for Compacted Soil and Its Application to Stability Analysis

Student Number: 06M51332 Name: Shinichi WATANABE Supervisor: Prof. Hideki Ohta

締固め粗粒材料の土質定数決定法と安定解析への適用性

06M51332 太田研究室 渡邉 真一

道路盛土やフィルダム等の土構造物は、さまざまな粒径の土粒子からなる粗粒材料を締固めて作られる。これらの土構造物に要求される性能（構造物や車両重量の支持，透水性等）を満たす様に設計・施工を行うには，締固め土の強度・変形特性に関する土質定数を求める必要がある。本研究では等価先行圧密応力の考え方に基づき締固め土の土質定数を求める。また求めた土質定数を用いて地震時の安定解析を行いその適用性を調べた。

1 Introduction

Most of geotechnical structures, such as road and airport embankment, dam, river bank, are made of compacted granular materials. In construction of the structures, quality management of compaction is made by indicators represented by D value in connection with dry density and water content of soil. This is based on Proctor's principle. However, the dry density of soil is not directory connected with deformation and strength parameters. In order to achieve required performances of compacted earth structures such as safety factor of slope failure, bearing capacity and permeability, it is very important to accurately estimate the material parameters for use in design and prediction of deformation behaviour of the compacted earth structures. The purpose of this research is 1) to suggest the procedure of material parameter determination of compacted granular materials using large-scale constant volume direct simple shear test, based on the theory of Ohta and Hata (1977), and 2) to verify applicability of the estimated parameters for using the stability problem of highway embankment in earthquake.

2 Description of analyzed site

Noto toll road is connected between Kanazawa and Noto region which was opened to traffic in 1982. Since passing along the 45m - 245 m altitude in north of Yanagida IC, most of this road are comparatively high embankment sections which are over 20m in height. The characteristics of fill materials are the remarkable swelling one and the strength reduction by slaking. Disasters due to heavy rain have been frequently occurred in the past. Noto-Hanto earthquake was occurred on March 25, 2007 which was the maximum acceleration of 945gal and considered as the maximum scale of earthquake which have occurred in this area since 1600's. There were 11 slope failures at parts of the Noto toll road. In this study, Section 9 is selected as analyzed site which occurred the large-scale slope failure. Fig.1 shows the collapse of the Section 9 after Noto-Hanto earthquake. The Section 9 was the high embankment section about 30m high, it got down over about 140m of length, and the traffic lane assumed three blocks on the west side was collapsed, and collapsed soil were pushed out by the lower slope surface.

Fig. 1 NOTO tall way section 9

3 Analysis method

In this research, stability analysis of embankment in case of the earthquake using the estimated material parameters by large-scale constant volume direct simple shear test is conducted. A method of seismic coefficient is used for evaluating the influence on the earth structure by earthquake motion. As for method of seismic coefficient, when the earthquake acceleration A acts on foundation ground, the inertia force of AW/g acts on the superstructure of a weight W. A/w at this time is defined as seismic coefficient K_s. In this study, stability analysis is conducted by applying this method of seismic coefficient to both the slice method and the two-dimensional finite element analysis. The slice method is one of the limit equilibrium methods using the strength parameters of soil. This method is the approach of estimating for the factor of safety using the shear force and the shearing resistance of acting on a fracture surface of embankment. In the slice method, each shear force and shearing resistance are calculated by
4.2 Pre-consolidation stress

An attempt was used to simple dynamic compaction by static consolidation stress at laboratory level. The concept referred to previous research by Ohta and Hata. (1977) said that pre-consolidation stress can be defined through $e - \log \sigma'$ curve which is converted from the settlements plotted against the static consolidation pressures (believed to be equivalent with dynamic compaction).

From the prospected pre-consolidation stress applied as a normal pressure in constant volume direct simple shear test, the shear strength of compacted soil can be then obtained from the laboratory experiment.

![Fig. 4 Large-scale simple shear apparatus](image)

4.4 Determination of material parameters

4.1 Sample Data

By using undisturbed samples collected from the construction site for laboratory test, the experimental results can be obtained and classified as soil parameters in Table 1.

![Fig. 3 Gading curves](image)

Table 1 Soil parameter

<table>
<thead>
<tr>
<th>soil property</th>
<th>ρ_d (kN/m3)</th>
<th>ρ_d (kN/m3)</th>
<th>void ratio e</th>
<th>saturated water content w_{sat} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry density</td>
<td>13.6</td>
<td>28.5</td>
<td>0.95</td>
<td>35.7</td>
</tr>
<tr>
<td>soil density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Strength Parameter
Shear strength parameter can be obtained form direct simple shear test. In this study constant volume direct simple shear (DSS) test has been conducted with specimen consolidated under pre-consolidation pressure 800.0 kPa approximated to the real construction site. Test condition of DSS is shown Fig.6.

Constant volume DSS test were conducted 4 stages with 4 different consolidation pressures. And each initial normal stress is 100kPa, 200kPa, 400kPa and 800kPa. The experimental result is shown in Fig.7.

From this result strength parameters are determined with $c=140.2$ kPa and $\phi=15.5$ degrees.

4.4 Constitute parameters
Constitute parameters for modeling are determined by the result of consolidation test and DSS test. According to the flow chart shown in Fig.8 constitute parameters were determined as Table.2.

Fig. 5 e-log\(\sigma\), and pre-consolidation stress

$$\sigma_{\text{pre}} = 848.9 \text{kPa}$$

Fig. 6 Condition of specimen while DSS

Fig. 7 failure criterion and strength parameter

常数体积 DSS test were conducted 4 stages with 4 different consolidation pressures. And each initial normal stress is 100kPa, 200kPa, 400kPa and 800kPa. The experimental result is shown in Fig.7.

From this result strength parameters are determined with $c=140.2$ kPa and $\phi=15.5$ degrees.

4.4 Constitute parameters
Constitute parameters for modeling are determined by the result of consolidation test and DSS test. According to the flow chart shown in Fig.8 constitute parameters were determined as Table.2.

![Flow chart of parameter determination](image)

<table>
<thead>
<tr>
<th>D</th>
<th>A</th>
<th>λ</th>
<th>M</th>
<th>α</th>
<th>σ_0</th>
<th>K_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.106</td>
<td>0.920</td>
<td>0.245</td>
<td>1.195</td>
<td>0.343</td>
<td>899</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Fitting parameter n_h is determined by trial value (herein 2.5) to fit the DSS simulation result to the experimental result. Result of simulation and experiment of DSS are shown in Fig.9.

Fig. 8 Flow chart of parameter determination

<table>
<thead>
<tr>
<th>Experimental data</th>
<th>Simulation (EC model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_h=2.5$</td>
<td></td>
</tr>
</tbody>
</table>

It is confirmed that the constitutive parameters shown in Table 2 are adequately determined. Because the result of simulation agrees with experimental result.

5 Result of analysis
5.1 Slice method
2 kinds of failure surfaces 1 and 2 are set as shown in figure 10. Failure surface 1 is considered as a true failure surface, whereas failure surface 2 is considered as an optimum circular arc fitting the true failure surface.

Safety factors against the seismic coefficients are analyzed under condition of fully saturated and unsaturated. The analysis results under those different conditions can be plotted as shown in figure 11.
5.2 Elasto-plastic FE analysis

Another attempt was carried on the same failure slope by using elasto-plastic FE analysis. Mobilized mass was meshed as small elements and boundary was assumed by the potential discontinuity plane which separated the mobilized mass from the rigid body. Seismic coefficient was simplified as horizontal force acting laterally and subjected to increase the driving moment (see Fig.12).

Deformation displayed by the FE analysis result showed as in Fig.13 without tension crack and in Fig.14 with assumed crack element respectively. Each result shows the failure elements are developed at boundary. However, observational data of failure does not coincide with this result. Therefore, elasto-plastic FE analysis is not practice in this case.

To obtain reasonable result by FE analysis applied method of seismic coefficient, more reasonable conditions are needed to be considered.

6 Conclusions

- Adequate soil parameters have been obtained from experiment with specimen which is equivalently consolidated to site fill material
- Slice method considering 4 case has been conducted and obtained reasonable result.
- Because of unreasonable Boundary condition, elasto-plastic FEM applied the method of seismic coefficient shows unreliable deformation compared to the site observation.

References

竹山智英：土／水連成有限要素解析手法における解の信頼性に関する諸問題とその理論的解決方法，東京工業大学学位論文，2007
大野進太郎：非線形コントラクタンシー表現関数に基づく地盤材料の弾塑性構成モデル，東京工業大学学位論文，2006
石垣勉，渡邉真一，尾本志展，太田秀樹：静的締固め粗粒材料の等体積単純せん断挙動，土木学会舗装工学論文集，第13巻，2008
THE APPLICATION OF MACRO-ELEMENT METHOD TO ANALYSIS FOR BEHAVIOR OF SOFT GROUND IMPROVED BY VERTICAL DRAINS

Student Number: 07M18013 Name: Aki Arai Supervisor: Hideki OHTA and Thirapong PIPATPONGSA

鉄直ドレーンが打設された軟弱地盤の動態解析におけるマクロエレメント法の適用

荒井 亜希

鉄直ドレーンが打設された現場に対しては、三次元的な取り扱いが必要となる。しかし、このような現場を二次元平面ひずみ条件で解析する場合には再現が難しい。そこで、この問題を解決するため、関口ら(1986)は鉄直ドレーンの排水効果を要素レベルで忠実に考慮できるマクロエレメント法を提案した。本研究では、鉄直ドレーンが打設された現場を対象に、マクロエレメント法を適用した土／水連成有限要素解析を行い、当該手法の妥当性の検討を行った。また、地盤の挙動をより正確に再現できる土の構成モデルを選択するため、せん断速度に着目した非排水三軸圧縮試験を行い、シミュレーションと比較することにより考察を行った。

1. Introduction

Original Cam-Clay model and Modified Cam-Clay model are widely used as a constitutive model of soils. The undrained effective stress path obtained by a normal shear tests are said to be good agreement with the simulation by Modified Cam-Clay model rather than Original Cam-Clay model. However, the shear rate required by the normal test is about two orders than the shear rate measured at the real construction site. Therefore I perform undrained triaxial compression tests at two different constant shear axis strain rates are performed in order to clarify which model is better used for analysis.

From the laboratory test results, the performance of each constitutive model represented the behavior of the true ground will be able to be justified.

In addition, analysis is also extended to the ground improvement by vertical drains (see Fig-1) under 2-dimensionnal plain strain condition. Even thought the treatment of 3 dimensions is needed, an application of the macro-element method suggested by Sekiguchi (1986) to overcome the problem is believed. And I thus examined the validity of this method.

2. The Outline of Triaxial Tests

The samples used in this study are the undisturbed samples of clay obtained from various sites in Japan. By boring investigation, soil data were obtained for each sample and shown in Table-1.

The test procedure is as follows: At first I saturate a specimen and take back pressure (w=290kPa). Then, I perform an isotropic consolidation and a constant volume compression test. About 2 times pressure of the pre-consolidated stress is applied during 24 hours. In the shearing process, the axis strain rate was set to be 0.05%/min and 0.005%/min. The details of the test condition are shown in Table-2.

Table-1 Test samples

<table>
<thead>
<tr>
<th>Sampling Position</th>
<th>Saitama</th>
<th>Urayasu</th>
<th>Urayama</th>
<th>Urayama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m) GL -29.0 - 29.98</td>
<td>4.58</td>
<td>6.91</td>
<td>6.43</td>
<td>8.04</td>
</tr>
<tr>
<td>Natural water content w (%)</td>
<td>1.224</td>
<td>1.789</td>
<td>1.795</td>
<td>1.264</td>
</tr>
<tr>
<td>Void ratio e</td>
<td>45.4</td>
<td>74.2</td>
<td>92.3</td>
<td>122.4</td>
</tr>
<tr>
<td>Liquid limit wL</td>
<td>25.8</td>
<td>29.9</td>
<td>33.3</td>
<td>37.4</td>
</tr>
<tr>
<td>Plastic limit wP</td>
<td>20.2</td>
<td>44.1</td>
<td>39</td>
<td>75</td>
</tr>
<tr>
<td>Compression index c'</td>
<td>0.45</td>
<td>0.08</td>
<td>0.05</td>
<td>1.14</td>
</tr>
<tr>
<td>Pre-consolidated stress (kN/m²)</td>
<td>139</td>
<td>260</td>
<td>290</td>
<td>300</td>
</tr>
</tbody>
</table>

Table-2 Test cases

<table>
<thead>
<tr>
<th>No.</th>
<th>Sampling Position</th>
<th>Depth (m)</th>
<th>Consolidation stress (kN/m²)</th>
<th>Axial strain rate (%/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Saitama</td>
<td>GL -31.50 - 32.33</td>
<td>300</td>
<td>0.05</td>
</tr>
<tr>
<td>②</td>
<td>Urayama</td>
<td>GL -29.0 - 29.9</td>
<td>550</td>
<td>0.05</td>
</tr>
<tr>
<td>③</td>
<td>Urayama</td>
<td>GL -22.0 - 22.7</td>
<td>600</td>
<td>0.05</td>
</tr>
<tr>
<td>④</td>
<td>Urayama</td>
<td>GL -29.0 - 29.9</td>
<td>600</td>
<td>0.05</td>
</tr>
<tr>
<td>⑤</td>
<td>Saitama</td>
<td>GL -31.50 - 32.33</td>
<td>300</td>
<td>0.05</td>
</tr>
<tr>
<td>⑥</td>
<td>Urayama</td>
<td>GL -29.0 - 29.9</td>
<td>550</td>
<td>0.005</td>
</tr>
<tr>
<td>⑦</td>
<td>Urayama</td>
<td>GL -22.0 - 22.7</td>
<td>600</td>
<td>0.005</td>
</tr>
</tbody>
</table>

3. The Results of Triaxial Tests

In the simulation, A specimen is modeled as one element, and used the elasto-viscoplastic constitutive model proposed by Sekiguchi and Ohta. The input parameters needed for the Sekiguchi and Ohta’s model are summarized in Table-3. These are the parameters for the elasto-plastic materials.

Fig-1 Ground improvement by vertical drains
Table-3 Material parameters

| \(\Delta \) | Irreversibility ratio | \(M \) | Critical rate parameter | \(D \) | Coefficient of dilatency | \(\nu \) | Effective poisson ratio | \(\sigma_{v}^{0} \) | Initial volumetric stress rate | \(\sigma_{e}^{0} \) | Preconsolidation vertical pressure | \(K_{e} \) | Coefficient of earth pressure at rest | \(K_{p} \) | Coefficient of in-situ earth pressure at rest |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3 | 0.5 | 0.75 | 0.1 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

First, plasticity index \(J_{e} \), void ratio at preconsolidated state \(e_{0} \), compression index \(\lambda \) and swelling index \(\kappa \) that was already obtained by boring investigation are used in the simulation. \(K_{e} \) and \(K_{p} \) assumed as 1.0, \(\nu \) is also assumed as 0.3. \(M \) is obtained from the experimental result. The input parameters used for the simulation are summarized in Table-4.

Table-4 Input parameters for simulation

<table>
<thead>
<tr>
<th>No.</th>
<th>(c')</th>
<th>(\phi)</th>
<th>(D)</th>
<th>(D')</th>
<th>(\Delta)</th>
<th>(M)</th>
<th>(v)</th>
<th>(\sigma_{v}^{0})</th>
<th>(\sigma_{e}^{0})</th>
<th>(\sigma_{v}^{0})</th>
<th>(\sigma_{e}^{0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.224</td>
<td>0.594</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>1.224</td>
<td>0.594</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>1.224</td>
<td>0.594</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>1.224</td>
<td>0.594</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>1.224</td>
<td>0.594</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

The results are shown in Fig-2. From Fig-2, the effective stress path at fast strain rate adopted in normal laboratory test becomes close to an undrained shear simulation of Modified Cam-Clay model (MCC). And the effective stress path of the shear rate that occurred in the real site is slow and closed to an undrained simulation of Original Cam-Clay model (CC). From this results, when we choose a constitutive model of FEM analysis, it is thought that a choice may reproduce real ground behavior model more precisely with Original Cam-Clay model (CC) than with Modified Cam-Clay (MCC).

![Fig-4 shows the area improved by sand drains](Image)

5. Site I (Ohsawago, Akita)

The first site of the analysis is the highway embankment constructed on Ohsawago-site of Akita line of Tohoku transversal highway. Fig-4 shows the analyzed cross section of the embankment.

6. The Input Conditions in Analyses

From a consideration of the experimental results, Sekiguchi and Ohta’s model was employed in the analysis. Sekiguchi and Ohta’s model is expanded from the Original Cam-Clay model so that can express the anisotropic state.

6-1 The material parameters

The list of the material parameters used for analysis is presented in Table-5.

Table-5 Material parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Value</th>
<th>Description</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
</tr>
<tr>
<td>Type</td>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
</tr>
<tr>
<td>Type</td>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
<td>Description</td>
<td>Unit</td>
<td>Value</td>
</tr>
</tbody>
</table>
6-2 Modeling of sand drains

The modeling of the sand drain can be performed by two kinds of method. One is macro-element method and another is a method to reproduce the clay ground by increasing coefficient of permeability of the ground. In the case of this method, Coefficient of permeability is converted so that times for 50% consolidation of horizontal and vertical direction are the same. The factor for permeability is obtained as 75.3.

6-3 The mesh formation and the boundary conditions

The mesh formation used in analysis is shown in Fig-5 and boundary condition is also shown in Fig-5.

7. The Results of Analyses

The locations obtained from the measurement instrument and the locations indicated by the result of the analysis are shown in Fig-6.

8 Site II (Sri Lanka)

The second site of analysis is the highway embankment constructed on the site of the southern part of Sri Lanka. 8) Fig-9 shows the analyzed cross section.

9. The Input Conditions in Analysis

9-1 The material parameters

The material parameters used for analysis is listed in Table 6.

Table-6 Material parameters
9-2 Modeling of vacuum consolidation

The modeling of vacuum consolidation is represented by two kinds of method. One is macro-element method and another is a method to reproduce the clay ground by decreasing coefficient of permeability of the ground. Then I alternate the mesh formation to perform negative pressure at the element boundary. But it overestimates a drainage effect by applying negative pressure. Therefore it is necessary to decrease the coefficient of permeability. In this case method, coefficient of permeability is converted so that times for 50% consolidation of horizontal and vertical direction are the same. The factor for permeability is obtained as 0.175.

9-3 The mesh formation and the boundary conditions

The mesh formation used in analysis is shown in Fig-10 and boundary condition is also shown in Fig-10.

The locations obtained from the measurement instrument and the locations indicated by the result of the analysis are shown in Fig-11.

The results of the analysis are shown in Fig-12 and Fig-13. A solid line is the result obtained by using macro-element method and a dashed line is the result of the method of changing a coefficient of permeability. It may be said that the analysis result used macro-element method can reproduce a behavior of the ground at the center of embankment.

11. Conclusions

• The effective stress path by the triaxial compression tests in which shear rate is relatively fast agreed well with the simulation by employing the Modified Cam-Clay model. But the effective stress path by the triaxial compression tests with low shear rate deviates from that of Modified Cam-Clay model, and get closer to the simulation by employing the Original Cam-Clay model. Therefore, we should choose the Original Cam-Clay model when simulating a real behavior of the ground with site artificial construction and the change of the external force by the natural phenomenon.

• Simulation that reflected a process of the real construction could well reproduced settlement and pore water pressure observed on the site. So I was able to confirm validity of the macro-element method.

References

1) Schofield,A.N. and Wroth,C.P. : Critical state soil mechanics, Chap.6, McGRAW-HILL, pp.135-166, 1968
4) 応用地質資料
6) 松永泰直：「東北地方の地盤工学」, (社)地盤工学会，pp.252-258, 1997.
8) 大成建設資料
9) 竹山智英、荒井亜希、太田秀樹：真空圧密による改良域のモデル化、地盤工学会関東支部発表会, 2008.
Effect of Initial Water Curing Period on Chloride Permeability of Hardened Blast Furnace Cement

Student Number: 07M18020 Name: Shohei KIMURA Supervisor: Nobuaki OTSUKI

初期水中養生が高炉セメント硬化体の塩化物イオン拡散性におよぼす影響

木村祥平

現在、コンクリートの湿潤養生終了時期の決定等、コンクリートの品質を表す指標として広く用いられていているのは圧縮強度であるが、コンクリートの物質透湿性をはじめとした耐久性と圧縮強度は一義的な関係がないと考えられており、養生期間が耐久性に及ぼす影響は事実上考慮されていない状態にあるといえる。一方、従来から耐塩化物イオン浸透性が高いとされている高炉セメントは、短期の初期養生期間によりその性能が低下することが指摘されており、特に圧縮強度よりも耐塩化物イオン拡散性の低下が著しいといわれている。そこで、本研究では初期養生期間が高炉セメント硬化体の耐久性に及ぼす影響を水和反応および空間構造の変化を関連付けて検討し、さらに高炉セメント硬化体の初期養生期間の短縮についても検討を行った。

1 introduction
Blast furnace slag is a material that is expected to be an action for environmental problems. According to Kyoto Protocol Aim, there is a policy that says amount of CO$_2$ emission in Japan must decrease by to increase proportion of blended cement to 24.8%. The percentage of blast furnace slag cement in blended cement is over 90%. Therefore it is a necessity to increase usage of blast furnace slag cement. However, recently the usage of blast furnace slag cement does not increase because blast furnace slag cement has several problems that are include low early strength.

Meanwhile, initial curing period of concrete is decided by JASS5J or Standard Specification for Concrete Structures and barometer of deciding initial curing period is compressive strength. However, Okazaki1 said that compressive strength and durability such as permeability do not have a principal concern. Nakara2 said that short initial curing period occur the low compressive strength and low resistance of permeability compared with enough curing was given the concrete. Hara3 focus on relationship between initial curing period and pore distribution, they said that short initial curing period affects the pore distribution of the range from 0.1µm to 1.0µm and concluded short curing period remain coarse pore.

There are some reports that examined an initial curing period and material permeability and a relationship of the pore distribution including an above-mentioned report. However it cannot be said that it was still argued enough. The research that considers even the continuousness of the pore in the pore distribution is few. It aimed to understand the effect that the initial curing period exerted on the chloride diffusive quantitatively in this research based on above, and to examine the change in the pore distribution according to the hydration mechanism. Moreover, examined the possibility of shorten the initial curing period of the early strength slag cement

2 Experimental Procedure

2.1 Materials Used
The materials used in this study are ordinary portland cement (OPC) and high early strength portland cement(HPC) to remedy low early strength and blast furnace slag powder(BFS , slag basicity:1.89)

Table.1 shows chemical composition of these materials. BFS was added the gypsum 2mass% as SO$_3$ concentration. Fine aggregate used in this study is land sand from Chiba prefecture (Density 2.62 g/cm3 , water absorption 1.58%).

<table>
<thead>
<tr>
<th>Table.1 Chemical composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition (mass%)</td>
</tr>
<tr>
<td>ig,loss SiO$_2$ Al$_2$O$_3$ Fe$_2$O$_3$ CaO MgO SO$_3$ Na$_2$O K$_2$O</td>
</tr>
<tr>
<td>OPC 1.05 20.38 5.18 3.37 63.96 1.88 2.24 0.4 0.4 3420</td>
</tr>
<tr>
<td>HPC 1.12 20.59 4.88 2.42 65.03 1.35 3.25 0.29 0.36 4620</td>
</tr>
<tr>
<td>BFS 0.49 33.58 14.26 0.41 43.13 6.05 - 0.24 0.35 4550</td>
</tr>
</tbody>
</table>
2.2 Method of Manufacturing the Specimens

Water binder ratio was 0.5. Sand binder ratio was 3.0 of mortal for compressive strength test. The specimens for X-ray diffraction, exposure test and mercury intrusion porosimetry test were made by paste. Mixing of mortal for compressive strength test was cast into 4×4×16cm mold based on JIS R 5201. Mixing of paste which is for X-ray diffraction test and mercury intrusion test was by hand for three minute and cast into mold of φ2.5cm and height1.5cm. The past for exposure test was cast into 4×4×16cm mold.

2.3 Setting of Curing

In this study, curing method is water curing. The detail of curing is presented in Fig.1. To put it briefly, at 1st day, specimens cured in mold. Afterward, specimens cured in water(20°C) while predefined period. After water curing, specimens cured in atmosphere(20°C RH60%) until 28days. After atmosphere curing, specimens for exposure test were coated by epoxy except exposure surface. Later, specimens for exposure test were into salt water while 56days. Specimens for X-ray diffraction and mercury intrusion porosimetry were stop hydration by using acetone and then vacuum 24hours to dry on age of 28day.
2.4 Method of Experiment

Compressive strength were measured based on JIS R 5201. Chloride diffusion coefficient were measured based on JIS A 1154. Powder samples for chloride analysis were ground off by sliced specimens parallel to the exposed surface. Chloride diffusion was calculated by fick’s second law.

The reaction ratio of chemical compound of cement was measured by internal reference method of X-ray diffraction test. X-ray source was used Cu-Kα. Speed of X-ray analysis was 0.2°/min. reference materials for internal reference method was used α-Al₂O₃ and add α-Al₂O₃ as 10mass% to samples.

Porosity was measured by mercury intrusion porosimetry. Fig.2 is shows an example of result of mercury intrusion porosimetry test. The amount of total volume and pore volume above 50nm diameter is shown at Fig.2.

3 Results and Discussion

3.1 Compressive Strength and Chloride Permeability

Fig.3 shows the experiment result of compressive strength test. The influence of initial curing period was not confirmed in the replacement level 0%. On the other hand, as for the blast furnace cement, the decrease in strength was confirmed at C-1 and C-3. However, the deterioration of strength was not confirmed in each composition if the initial curing period was five days or more.

All compositions is able to obtain the 40MPa. Moreover, OPC-B20 and HPC-B00 can obtain 50MPa if initial water curing period above 5days.

The result of the chloride diffusion test is shown in Fig4. It was confirmed that the chloride diffusion coefficient had decreased from C-1 to C-7 in each composition. Moreover, the diffusion coefficient had decreased from C-7 to C-14 was confirmed on several composition. In addition, a remarkable decrease was seen by the chloride diffusion coefficient as the high replacement levels. Moreover, it was confirmed that the blast furnace cement fell below the diffusion coefficient of the replacement level 0% even if initial curing condition was C-1.

That is, there is a possibility that initial curing period in which 28days strength and the chloride diffusion coefficient were considered can be shortened if it is a blast furnace cement of the HPC series and the initial water curing period above 5days.

The sensitivity on compressive strength of initial water curing period is shown on Fig.5. The sensitivity on compressive strength was calculated by following formula.

\[K_{\text{strength}} = \frac{\sigma_{C-14}}{\sigma_{C-1}} \]

\[K_{\text{strength}} \]: the sensitivity on compressive strength
\[\sigma_{C-1} \]: Compressive strength on C-1
\[\sigma_{C-14} \]: Compressive strength on C-14

The sensitivity of compressive strength is increase in increase with replacement levels at each cement series. The sensitivity of chloride diffusion coefficient is shown on Fig.6. The sensitivity on chloride diffusion coefficient was calculated by following formula.

\[K_{\text{chloride}} = \frac{D_{C-1}}{D_{C-14}} \]

\[K_{\text{chloride}} \]: The sensitivity on chloride diffusion coefficient
\[D_{C-1} \]: The chloride diffusion coefficient on C-1
\[D_{C-14} \]: The chloride diffusion coefficient on C-14

The sensitivity of chloride diffusion coefficient is increase in increase with replacement levels. Moreover the sensitivity of chloride diffusion coefficient is higher than compressive strength cases especially on high replacement levels.

3.2 Pore Distribution

The total pore volume is shown in Fig7. The influence at the replacement level and the initial curing period was not able to be confirmed according to the total pore volume. The pore volume above 50nm is shown in Fig8. The pore volume above 50nm assumed to exert the influence at the initial curing period, and was especially remarkable in high replacement level. It was able to be confirmed to the blast furnace slag that there was an action that changed the pore above 50nm into a minuter pore.

4 Relationship between Chloride Permeability and Pore Distribution

The relation between a diffusion coefficient and an amount of pore above 50nm is shown in Fig9. Both were able to confirm both correlations by three layers "replacement level0%", "replacement level 20%", and "replacement level 50% and 70%".

Namely, increase in initial water curing period decrease amount of pore volume above 50nm diameter. Then, chloride diffusion coefficient is decreased.

5 Conclusions

- At the initial water curing period above 5days, decrease of compressive strength is not confirmed.
- Increase in initial water curing period decreased the chloride diffusion
coefficient. However, increase of replacement level drastically decreased the chloride diffusion coefficient compared to the initial water curing period. Any initial water curing period, blended cement is able to reach the lower chloride diffusion coefficient than ordinary portland cement.

- The sensitivity of initial curing period on chloride diffusion coefficient is higher than that on compressive strength, especially, in cases of high replacement levels.
- Using HPC may shorten the initial water curing period. If the demould strength is enough.
- The effect of initial water curing period caused the decrease of pore volume above 50nm, thus, the chloride diffusion coefficient was decreased.

References

4) Tsuyoshi.S et al: Evaluation of pore distribution of mortal specimen based on mercury intrusion porosimetry test, inorganic material
Development of New Approach to Prepare CoMo/Al₂O₃ Catalyst for Deep Hydrodesulphurization

Student Number: 07M18036 Name: Tatsuya KUSAMA Supervisor: Hirofumi HINODE

1. Introduction

The regulations on the sulfur content in liquid fuels have become stricter over the years in order to protect the environment (e.g. Japan: less than 10 ppm)\(^1\).

The possible methods to produce "sulfur-free (less than 10 ppm)" fuel are (1) building additional reactor, (2) improving reactor or equipment and (3) improving catalyst performance. Due to relatively high cost of building or improving reactor, the studies of the hydrodesulphurization (HDS) catalyst are performed more widely these days.

Among the HDS catalysts that are widely studied, CoMo/Al₂O₃ attracts much attention because of its high hydrodesulphurization ability. The known active site for this catalyst is a kind of CoMoS phase proposed by Topsøe et al\(^2\).

This CoMoS phase was formed because Co is located on the edge of MoS² on the supported material surface.

There are two types of CoMoS phase. Type I has strong interaction with support, forming single layer of MoS² slab and has low activity. On the other hand, Type II has weak interaction with support, forming multi layer of MoS² slabs and has high activity. Therefore, production of CoMoS phase Type II is more desirable.

In the previous study \(^3\), the following three new preparation procedures using \((\text{NH}_4)_2\text{MoS}_4\) (ATTM) as the precursor were proposed:
- Route-1 (R1) includes impregnation of \(\text{Co(NO}_3)_2\cdot6\text{H}_2\text{O}\), calcination under \(\text{H}_2\) atmosphere, impregnation of ATTM, and vacuum calcination at 500°C.
- Route-2 (R2) includes impregnation of \(\text{Co(NO}_3)_2\cdot6\text{H}_2\text{O}\), calcination under air atmosphere, impregnation of ATTM, and vacuum calcination at 500°C.
- Route-3 (R3) includes impregnation of ATTM, vacuum calcination at 500°C, impregnation of \(\text{Co(NO}_3)_2\cdot6\text{H}_2\text{O}\), and calcination under \(\text{H}_2\) atmosphere.

It is reported that thiophene conversion of the catalyst prepared by Route-3 (R3) in the new procedure was higher than that of the commercial catalyst \(^3\).

The aims of this study are (1) the investigation of the effect of the specific
surface area of Al₂O₃ supports and (2) the investigation of the effect of the H₂ calcination period.

2. Experimental

2.1 Catalyst preparation

2.1.1 Materials used in preparation catalyst

The catalyst supports were JRC-ALO2, ALO5, ALO6 and ALO8 (Al₂O₃, Reference Catalyst, The Catalyst Society of Japan, BET specific surface area 148-285 m²/g).

The catalyst precursors were ammonium tetraphenylborate (ATTM), (NH₄)₂MoS₄, as Mo precursor and cobalt (II) nitrate hexahydrate, Co(NO₃)₂.6H₂O, as Co precursor.

2.1.2 Catalyst preparation

A series of CoMo/Al₂O₃ catalyst was prepared by double impregnation method. The Mo loading was 17.5wt% and the molar ratio of Co/Mo was fixed at 0.27. The catalyst was impregnated with ATTM, and calcined at 500°C for 2h in vacuum. Then, the catalyst was impregnated with Co(NO₃)₂.6H₂O, and calcined at 400°C for 2, 6, 12 and 24h under H₂ atmosphere. Presulfidation was carried out at 400°C for 4h in 5%H₂S/H₂ gas stream.

2.2 Activity test

The reaction was carried out in a fixed-bed reactor under atmospheric pressure. The catalyst was pelletized, crushed and sieved to 0.71~1.00 mm. 0.2 g of the sample was packed in the reactor and the total flow rate of the feed mixture gas was fixed at 20 ml/min.

The concentration of thiophene in the feed stream was maintained at 2.1mol%. The reaction temperature was selected at 300°C. After the reaction had reached steady-state condition in two hours, the concetration of thiophene was quantitatively analyzed by GC-MS (Shimadzu Co. QP5050A).

2.3 Catalyst characterizations

The samples were characterized by powder X-ray diffraction (XRD, Rigaku Co., MultiFlex). Specific surface areas of the samples were measured with Brunauer-Emmett-Teller method (BET, Quantachrome Co., AUTOSORB-1 MP).

3 Result and discussion

Figure 1 shows thiophene conversions at 300°C using catalysts with supports of different specific surface areas and Table 1 shows the specific surface area of support, before preparation and after impregnation.

Table 1 Specific surface area of support before preparation and after impregnation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before preparation [m²/g]</th>
<th>After impregnation [m²/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRC-ALO2</td>
<td>285</td>
<td>206</td>
</tr>
<tr>
<td>JRC-ALO5</td>
<td>233</td>
<td>181</td>
</tr>
<tr>
<td>JRC-ALO6</td>
<td>180</td>
<td>137</td>
</tr>
<tr>
<td>JRC-ALO8</td>
<td>148</td>
<td>123</td>
</tr>
</tbody>
</table>
The catalyst with JRC-ALO2 showed the highest thiophene conversion of 99.7%. Thiophene conversion decreased with the decrease of specific surface area of support. At first, it was expected that the decrease of specific surface area of support using the same Mo loading would produce multi-layered MoS$_2$ and form CoMoS phase Type II. However, from this result it was concluded that CoMoS phase Type II was not formed by only decreasing the specific surface area of support.

All catalysts showed almost the same thiophene conversions regardless of the decrease of specific surface area when the H$_2$ calcination period was increased. With this result, the influence of H$_2$ calcination period on the HDS activity could not be observed. With lower Mo loading or lower reaction temperature, a more comparable result between different calcination periods may be obtained.

Figure 2 shows thiophene conversion at 300ºC using catalysts with different H$_2$ calcination periods.

![Figure 2](image)

Figure 2 Thiophene conversion at 300ºC using catalysts with different H$_2$ calcination periods

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before H$_2$ calcination [m2/g]</th>
<th>After H$_2$ calcination [m2/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h</td>
<td>206</td>
<td>202</td>
</tr>
<tr>
<td>6h</td>
<td>206</td>
<td>197</td>
</tr>
<tr>
<td>12h</td>
<td>206</td>
<td>183</td>
</tr>
<tr>
<td>24h</td>
<td>206</td>
<td>166</td>
</tr>
</tbody>
</table>

Table 2 Specific surface areas of catalysts with different H$_2$ calcination period (support: JRC-ALO2)

Figure 2 shows thiophene conversion at 300ºC using catalysts with different H$_2$ calcination periods and Table 2 shows specific surface area of catalysts with different H$_2$ calcination periods.

Figure 3 shows the XRD patterns of catalysts prepared by different supports and Figure 4 shows the XRD patterns of catalysts prepared at different H$_2$ calcination periods. MoS$_2$ peaks at 14.5, 34.2 and 58.3 were observed in all XRD patterns in Figs.3 and 4. The relation...
between the amount of MoS$_2$ and the HDS activity could not be observed.

4 Conclusion

The catalyst with JRC-ALO2 showed the highest conversion of 99.7%. Thiophene conversion decreased with the decrease of specific surface area of support using the same Mo loading. So, it was concluded that CoMoS phase Type II was not formed by only the decreasing the specific surface area of support.

The conclusion concerning the influence of H$_2$ calcination period was not obtained because almost the same thiophene conversion. With lower Mo loading or lower reaction temperature, a clearer result may be obtained.

References
Modeling of Sand Transportation using Long-Term Observed Datasets in the Semi-Arid Shrub Desert

Student Number: 07M18042 Name: Yumi KONDO Supervisor: Manabu KANDA

1. Introduction

Desertification is one of the most serious environmental problems in the world. Desertification is caused by various factors, including climatic variations and human activities. Sand transportation, the topic of this study, is one of the main mechanisms to cause desertification. In order to combat against desertification, revealing the mechanism of sand transportation is important.

Sand transportation is mainly driven by surface wind. Various slightly different equations for sand transportation are proposed by several researchers. In most sand-transport equations, total horizontal mass flux of sand Q [kg m$^{-1}$ s$^{-1}$] is expressed as a function of friction velocity u^* [m s$^{-1}$] and threshold friction velocity u^*_t [m s$^{-1}$]. In this study, the simple equation proposed by Owen (1964) is adopted;

$$Q = C \frac{\rho}{g} g u^* \left(1 - \left(\frac{u^*_t}{u^*}\right)^2\right)$$ (1)

where C is the dimensionless empirical constant value, $
ho$ [kg m$^{-3}$] is air density and g [m s$^{-2}$] is gravitational acceleration. Several researchers reported that Owen’s equation best agrees with the acquired data (e.g. McKenna Neuman et al., 1997; Iversen and Rasmussen, 1999)

Sand transportation is also affected by many land-surface parameters, such as vegetation, roughness elements, soil particle size distribution, soil moisture, surface crust, snow cover etc. However, studies of the influence of these parameters on sand transportation are not fully developed yet.

The objective of this study is to describe sand transportation as a function of surface wind and assess the effect of land surface parameters on it. To achieve this objective, three goals are set in this study:

1) to check the bulk relation between sand transportation and parameters,

2) to determine the empirical constant C and frictional threshold wind speed u^*_t for the equation of Owen (1964).

3) to investigate the effect of vegetation and precipitation on C and u^*_t by using NDVI (Normalized Difference Vegetation Index) and precipitation datasets respectively.

Two advantages of this study are given below;

1) Sand trap datasets used in this study have been collected for more than 15 years since 1987. Simultaneously primary climatological datasets such as wind speed, precipitation and air temperature have been measured at the weather station. These datasets are the only datasets collected for such a long term continuously all over the world.

2) In this study sand trap is measured by BSNE sampler. The advantages of this instrument are low cost, electric free and the necessity of less maintenance thus suitable for the measurement in the desert. If we can establish the sand transportation model by using BSNE datasets, sand transport equations for various areas can be described.

2. Study Site

The Jornada Experimental Range (JER) is located in the northern Chihuahuan Desert, approximately 25km northeast of Las Cruces, New Mexico, USA (+32.5N, -106.8W, elevation 1188m). The climate of JER is characteristic of the northern region of the Chihuahuan desert with abundant sunshine, low relative humidity, wide ranges of daily temperature, and variable precipitation both temporally and spatially (Havstad et al., 2000). The surface of this study area is dominated by shrubs such as honey mesquite (P. glandulosa) or creosote (Larrea spp.).
3. Materials and Methods

For the analysis in this study, the datasets of sand trap, wind speed, precipitation, air temperature and NDVI are used. The details of these datasets are summarized in Table 1. Sand trap datasets were directly passed from the research team who conducts the measurement at JER. Climatological parameters were provided by the Jornada Long-Term Ecological Research (LTER) project. NDVI was derived from MODIS (Moderate Resolution Imaging Spectroradiometer) images, allowing a 250m maximum spatial resolution with 16days temporal resolution.

Frictional wind velocity u_* is calculated by using log-profile law assuming neutral condition;

$$u = \frac{u_*}{\kappa} \ln \frac{z}{z_0}$$ \hspace{1cm} (2)

where κ is the Karman constant (0.4), z_0 [m] is the roughness length, z [m] is the height of the anemometer (=2.5m) and u [m s$^{-1}$] is the wind speed measured by anemometer. For this calculation the information of z_0 is necessary, however the products of LTER project do not include z_0. We assume $z_0 = 0.003$m from the work of King et al. (2006) in which the measurements of roughness length was conducted at JER.

Since the amount of transported sand flux has vertical dependency due to gravity, the installation of vertically integrated horizontal sand flux Q [kg m$^{-1}$ s$^{-1}$] is necessary;

$$Q = \int_0^z q(z)dz$$ \hspace{1cm} (3)

where $q(z)$ [kg m$^{-2}$ s$^{-1}$] is the horizontal sand flux density. From the sand flux density at three heights, 15cm, 50cm and 100cm, horizontal sand flux density was calculated using the empirical formula used by Shao and Raupach (1992);

$$q(z) = c \exp[(az + bz^2)]$$ \hspace{1cm} (4)

where a, b and c are dimensional functions.

4. Results

After the investigation of temporal changes of several parameters, i.e. sand trap, NDVI, climatological parameters such as wind speed, precipitation, air temperature and some climatological indexes, the relation between parameters were discussed. From the bulk point of view, sand transportation is provoked when the wind speed is high. This can be strengthen by the fact that the season of high quantity of sand flux is in correspondence to the season of high wind speed, i.e. February to April. The correlation between sand flux and wind speed exceeds those between sand flux and other parameters, which suggest that wind speed is the primary parameter for sand transportation.
5. Discussion

5.1. Analysis Procedure

Since the sampling interval of sand trap is roughly one month whereas wind speed was recorded every one hour, an unique procedure was adopted in this study. Iterative calculation method was conducted for \(C \) from 0 to 1 with the resolution of 0.0001 and for \(u_r \) from 0 to 1.2 with the resolution of 0.01 to decide \(C \) and \(u_r \) simultaneously. First, sand flux was calculated for each \(u \)-above \(u_r \):

\[Q_{n,i} = 0 \quad u_i < u_r \] \((5) \),

\[Q_{n,i} = C \rho u^3_i \left(1 - \frac{u_r^2}{u_i^2} \right) \quad u_i > u_r \] \((6) \).

After summing up all \(Q_{n,i} \) for each sampling period of \(n \) set of data, we divided it by the number of \(u_r \) in one sampling period of sand trap (N):

\[\bar{Q} = \frac{\sum Q_i}{N} \] \((7) \).

The best combination of \(C \) and \(u_r \) was chosen to make the \(n \) set of residual error between \(Q_\alpha \) and observed \(Q_\alpha \) smallest.

5.2. All-In-One Analysis

From the non-linear least-squared method using the 68 datasets of sand flux and wind speed from 2000 to 2005 adopting the equation for sand transportation proposed by Owen (1964) and assuming roughness length \(z_0 \) to be 0.03m, \(C \) was calculated as 0.0187 and \(u_r \) was calculated as 0.78 (m/s):

\[Q = 0.0187 \rho \frac{u_i^3}{g} \left(1 - \frac{(0.78)^2}{u_i} \right) \] \((8) \).

Here we define deemed friction wind velocity \(\bar{u}_r \) to represent \(u_r \) through the sampling period. Since the sampling period of sand trap and wind speed do not match, we need the representative value of \(u_r \). \(\bar{u}_r \) is derived by calculating back \((5) \) substituting calculated sand flux \(q_i \) into \(Q \).

Figure 4. shows the relationship between \(\bar{u}_r \) and observed sand flux \(Q \) (kg m\(^{-1}\) s\(^{-1}\)). Solid line is the theoretical curve of \((5) \) which cross x-axis at \(\bar{u}_r = 0.78 \) (m/s) which is the threshold wind velocity for this case. The open symbols on y-axis are the datasets in which all of the hourly \(u_r \) were below \(u_r \) during the sampling period of sand trap. According to the procedure adopted in this study, these results are unavoidable regardless its unreality.

![Scatter plot of deemed \(u_r \) and observed sand flux \(Q \) (kg/m/s). Correlation coefficient \(\rho \) was 0.756.](image1)

![The ranges of both axes of Figure 5.3. were customized into narrower region.](image2)

Comparing to the values of constant \(C \) for Owen’s equation from various other studies, the acquired value 0.0187 from this study is considerably small (Table 2.). Several possible reasons for this difference of \(C \) can be considered:

1) The land surface condition at JER is greatly different from those of existing studies. While the land surfaces of other studies are covered with fine sediment without vegetation, the land surface at JER is severely vegetated.

2) Since the deviations of datasets from regression line are considerably large, there is an allowance for \(C \).

3) The difference of particle size distributions can generate a large difference of sand flux (Mikami et al., 2005)

4) The procedures to derive \(C \) are different between this study and other studies. As for other studies, since the sampling intervals of sand flux and wind speed correspond each other and the intervals are enough short for the analysis, they can decide \(u_r \) from the relation between sand flux and wind speed. On the other hand, in this study \(C \) and \(u_r \) was decided simultaneously by non-linear least-squared method because the sampling periods of sand flux and wind speed are not in accordance. This technical difference might cause some difference of \(C \) between this study and other studies.

<table>
<thead>
<tr>
<th>Source</th>
<th>Detail</th>
<th>Surface Condition</th>
<th>(C)</th>
<th>(u_r) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>this study</td>
<td>field experiment</td>
<td>vegetated (shrubs)</td>
<td>0.0187</td>
<td>0.78</td>
</tr>
<tr>
<td>Gillette et al. (1996)</td>
<td>field experiment</td>
<td>loose, sandy, flat</td>
<td>2.8</td>
<td>0.18-0.35</td>
</tr>
<tr>
<td>Nickling and Neuman (1997)</td>
<td>indoor wind tunnel</td>
<td>very well sorted 0.2mm sand</td>
<td>1.8</td>
<td>0.24</td>
</tr>
<tr>
<td>McKenna Neuman et al. (1997)</td>
<td>field experiment</td>
<td>moderately sorted medium sands (0.3-0.5m)</td>
<td>0.54-1.8</td>
<td>0.21-0.28</td>
</tr>
</tbody>
</table>

Table 2. Empirical constant \(C \) and \(u_r \) from other studies. Most of \(C \) are on the order of 1.
5.3. Four-Matrix Analysis

In order to investigate into the effect of various land-surface conditions on sand transportation, we classified the land surface into four categories. NDVI=0.18 and precipitation of 0.4 (mm/day) were chose to divide the numbers of datasets into four categories, matrix a, b, c, and d, equally. C and u*t are acquired for each category by the non-linear least-squared analysis. The conclusion from four-matrix analysis is that any effect of NDVI or precipitation on C and u*t was not detected. Partial reason for this result is the poor accuracy of the non-linear least-squared method because of the shortage of datasets in each category. Another technical reason for this result is that derived C and u*t from this method are not independent each other; greater u*t leads C to larger value and smaller C follows smaller u*t. Furthermore, the fact that the two land-surface parameters adopted in this study, NDVI and precipitation, are not independent each other, makes the interpretation of this result more difficult.

As for the effect of precipitation, it was pointed out that precipitation increases u*t and limits sand flux via two effects; the growing of vegetation and increasing of soil moisture. The possible reason for the insensitivity of sand flux to precipitation in this study can be considered that precipitation is not a direct measure of soil moisture, which effect on sand transportation has been studied by numerous researchers.

Table 3. Summary of the result of four-matrix analysis

<table>
<thead>
<tr>
<th>Category No.</th>
<th>NDVI</th>
<th>Precipitation (mm/day)</th>
<th>C</th>
<th>u*t (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.14-0.18</td>
<td>0.4</td>
<td>0.0006</td>
<td>0.35</td>
</tr>
<tr>
<td>b</td>
<td>0.14-0.18</td>
<td>0.4</td>
<td>0.0234</td>
<td>0.80</td>
</tr>
<tr>
<td>c</td>
<td>0.18</td>
<td>0.4</td>
<td>0.0193</td>
<td>0.64</td>
</tr>
<tr>
<td>d</td>
<td>0.18</td>
<td>0.4</td>
<td>0.0030</td>
<td>0.66</td>
</tr>
</tbody>
</table>

As for the effect of NDVI, in the previous studies it was pointed out that in the presence of vegetation, u*t severely increases and the amount of sand flux is limited. The primary reason for the insensitivity of sand flux to NDVI in this study can be considered that vegetation at this study site is dominated by shrubs which can block sand transportation even without leaves, which makes sand transportation at this study site insensitive to NDVI.

6. Conclusion

This study is challenging on the point that C and u*t were decided by non-linear least-squared method simultaneously, which method is different from previous studies, using the sand flux datasets acquired by BSNE sampler. This study revealed that description of sand transport equation is possible with the datasets from BSNE sampler with approximately one month intervals, though the efficiency of this description still leaves space to be discussed.

References

Permeation of coal tar absorption oil through ionic liquid supported liquid membrane

Student Number: 07M18059 Name: Yoshiyuki SHIMADA Supervisor: Ryuichi EGASHIRA

コールタールの吸収油（石油）における、イオン液体（1-ブチル-3-メチルイミダゾリウムテトラフルオロオーロ酸塩）を膜液、及びトルエンを溶媒として回分透過を行った。いずれの条件下においても、吸収油中の他の成分に比較して含窒素複素環式化合物が選択的に膜液を透過し、これらの成分間の分離が可能であることを確認した。膜にイオン液体を添加することによりいずれの成分の透過速度も劇的に増加した。さらにこれらの結果に基づいて透過の速度過程について検討した。

1. Introduction

Coal tar absorption oil (AO) is one of distillation fractions of a coal tar (b.p. = 470~550K) which is obtained coal carbonization. There are many kinds of chemical compounds contained in it, the nitrogen heterocyclic compounds such as quinoline (Q), isoquinoline (IQ), indole (I); the homocyclic compounds such as 1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), etc. The mass fraction of some main compounds in AO is shown in Table 1. These compounds are useful as raw materials for agricultural chemicals, medicines, perfumes, and many other useful chemicals. Generally, the current method mainly used to separate these compounds in AO is carried out in two steps: first step is a rough separation of AO into several fractions by acidic and basic extraction; and second step is further separation and purification of these fractions into respective products by other methods. The separation for this first step in the industrial fields has some drawbacks, e.g., corrosion of the equipments and difficulties in solvent recovery. To solve these problems, several alternative methods, such as liquid-liquid extraction method and O/W/O supported liquid membrane method (SLM) have been studied.

Ionic liquids (ILs) are emerging as alternative green solvents to the volatile organic compounds typically used in separation processes because they are air and water stable, have a non-measurable vapor pressure. ILs are organic salts that are liquid close to room temperature, constituted by an organic cation and either an organic or an inorganic anion.

It has been already reported that the organic nitrogen compounds by supported liquid membranes based on ionic liquids, etc. However there is no report of the separation from an actual multi-component like AO.

In this work, the separation of AO by the ionic liquid supported liquid membrane was conducted. The permeation rate process through the ionic liquid supported liquid membrane was investigated.

Table 1 Mass fractions of some main compounds in AO

<table>
<thead>
<tr>
<th>x_1,0</th>
<th>x_2,0</th>
<th>x_3,0</th>
<th>x_4,0</th>
<th>x_1MN,0</th>
<th>x_2MN,0</th>
<th>x_1IQ,0</th>
<th>x_2IQ,0</th>
<th>x_1I,0</th>
<th>x_2I,0</th>
<th>x_3I,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.077</td>
<td>0.019</td>
<td>0.036</td>
<td>0.012</td>
<td>0.107</td>
<td>0.263</td>
<td>0.064</td>
<td>0.098</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Experimental

2.1. Preparation of ionic liquid supported liquid membrane

The structure of the ionic liquid used in this work is described in Fig. 1 and the properties of it are shown in Table 2. 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF_4]) was selected as the membrane liquid due to the property of solubility. This ionic liquid was purchased from Wako Chemical Co., Ltd. 3 kinds of the membrane liquid were prepared (C_{IL}=0,0.5,1).

The specifications of the hydrophilic filter paper (cellulose, advancec filter paper no.5B) used as a supporter in the previous work[2] are shown in Table 3. The filter paper was purchased from Toyo Roshi Kaisha, Ltd.

The filter paper was impregnated with the ionic liquid by dropping carefully. Then, the excess of the ionic liquid from the membrane surface was removed and the mass of the liquid membrane was adjusted.

2.2. Batch permeation

Figure 2 illustrates a permeator for the supported liquid membrane (SLM). The liquid membrane was placed between two Pyrex glass vessels. The operation temperature was kept constant by the constant-temperature water passing through the tube coiled around the permeator. The principal conditions of permeation runs are shown in Table 4. The 12 permeation runs on 12 conditions were conducted by varying the following factors; the mass fraction of the material mass diameter thickness mean pore size real density

<table>
<thead>
<tr>
<th>H_2O</th>
<th>MeOH</th>
<th>EtOH</th>
<th>Acetone</th>
<th>THF</th>
<th>Heptane</th>
<th>Toluene</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 3 Specifications of the filter paper

<table>
<thead>
<tr>
<th>material</th>
<th>mass</th>
<th>diameter</th>
<th>thickness</th>
<th>mean pore size</th>
<th>real density</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellulose</td>
<td>0.104</td>
<td>0.07</td>
<td>2.2×10^4</td>
<td>4</td>
<td>1550</td>
</tr>
</tbody>
</table>
membrane liquid ($C_{IL}=0$, 0.5, 1), the stirring velocity in both phases ($N_{SLM}=6000$, 12000), the number of supporters ($n=2$, 3). The feed and solvent were poured into the respective vessels simultaneously and quickly, and then the agitation of the feed and solvent phases were started ($t=0$) to begin the batch permeation run. The raffinate and extract phases were sampled at specified operating times, for analysis by a gas chromatograph (GC-2010, Shimadzu Corp.).

3. Results and Discussion
3.1. Composition of extract phase
For all permeation runs, the membrane remained stable during the operation run because of low solubility in the raffinate and extract phases and the affinity for the supporter sheet[9]. Figure 3 shows examples of time courses of mass fractions in the extract phases. The mass fraction of each component increased linearly with time. The permeation rates, especially for I, drastically increased with the addition of the ionic liquid, because the addition of the ionic liquid widely increased solubilities of all components. The permeation rates of Q were largest in the case without the ionic liquid and those of I were largest in the case with the ionic liquid. The overall mass transfer from raffinate to extract phase was governed by the permeation through the membrane, because the permeation rate was not affected by the stirring velocity and was inversely proportional to the number of membrane supporter sheets.

3.2. Yield
The yield of component i, Y_i, was defined as,

$$Y_i = \frac{E \cdot Y_i}{R_{ij} \cdot x_{ij}} \quad (1)$$

Figure 4 shows the examples of time courses of Y_Q. Under all conditions, Y_i of nitrogen heterocyclic compounds were larger than those of other compounds, namely, it was confirmed that these compounds were separated into each other by the ionic liquid membrane. The yields of Q were the largest in the case without the ionic liquid and those of I were the largest in the case with the ionic liquid. The yields, especially for I, drastically increased with the addition of the ionic liquid.

Fig. 2 Schematic diagram of experimental apparatus

Table 4 Material systems and experimental conditions

<table>
<thead>
<tr>
<th>Feed</th>
<th>AO-heptane mixture (x_{AO}=0.5, x_{sol}=0.05) ($V_f=1.2\times10^{-7}m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
<td>toluene ($V_f=1.2\times10^{-7}m^3$)</td>
</tr>
<tr>
<td>Number of supporters</td>
<td>$n=1, 2, 3$</td>
</tr>
<tr>
<td>Membrane Liquid</td>
<td>water, ionic liquid ([bmim][BF_4] aqueous ($C_{IL}=0, 0.5, 1)$)</td>
</tr>
<tr>
<td>Stirring Velocity</td>
<td>N_{SLM} (h^{-1})</td>
</tr>
<tr>
<td>Temperature</td>
<td>T (K)</td>
</tr>
<tr>
<td>Time</td>
<td>t (h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N_{SLM} (h^{-1})</th>
<th>6000 or 12000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fig. 3 Time courses of mass fraction in extract phase

Fig. 4 Examples of time courses of mass fraction in extract phase

Table 4 Material systems and experimental conditions
3.3. Overall permeation coefficient
Since the mass fraction of each component increased linearly with time, namely, it could be assumed that the permeation rates were proportional to the mass fraction of the feed and the overall permeation coefficients were constant in each component, the permeation rate was expressed by [2],

\[
E_0 \frac{dY_i}{dt} = P_{i,j} \cdot A \cdot x_{i,0}
\]

(2)

Figure 5 shows the examples of the effects of \(C_{IL}\) on \(P_{i,j}\) calculated by Eq. (1). Regardless of the concentration of the ionic liquid, \(P_i\) of the nitrogen heterocyclic compounds was higher than those of other compounds, which means that the nitrogen heterocyclic compounds were selectively permeated through the liquid membrane to extract phase and could be separated from other compounds. The overall permeation coefficient was expressed by [2],

\[
P_{i,j} = \frac{\rho_{ML} \cdot D_i \cdot m_i}{n}
\]

(3)

where \(\rho_{ML}\), \(D_i\) and \(m_i\) denote the density of the membrane liquid, diffusivity of component \(i\) in the liquid membrane and distribution coefficient, respectively. The results that \(P_{i,j}\) widely increased with the addition of the ionic liquid and \(P_i\) of 1 decreased with the increase of \(C_{IL}\) are most affected by \(m_i\).

3.4. Separation selectivity
The separation selectivity of the nitrogen heterocyclic compounds relative to 2MN, \(\beta_{i,2MN}\), was defined as,

\[
\beta_{i,2MN} = \frac{P_i}{P_{i,2MN}}
\]

(4)

Figure 6 shows examples of the effects of \(C_{IL}\) on \(\beta_{i,2MN}\). Whereas \(\beta_{i,2MN}\) of Q and IQ decreased with the addition of the ionic liquid into the membrane, \(\beta_{i,2MN}\) increased. The effect of the addition of the ionic liquid on the other components was not observed and \(\beta_{i,2MN}\) of them are about 1. The number of the supporter sheets had no effect on \(\beta_{i,2MN}\). The highest \(\beta_{i,2MN}\) was about 18 in the case of \(C_{IL}=0.5\).

4. Conclusions
The nitrogen heterocyclic compounds were separated from AO by the ionic liquid supported liquid membrane. The overall mass transfer from raffinate to extract phase was governed by the permeation through the membrane. The permeation rates and the yields of all components dramatically increased with an addition of the ionic liquid. The yields of nitrogen heterocyclic compounds were larger than those of other compounds. The separation selectivities of each nitrogen heterocyclic compound were affected by the mass fraction of the ionic liquid.

Acknowledgment
The author wish to thank JFE Chemical Co., Ltd. for providing coal tar absorption oil.

Nomenclatures
\(A\) = contact area \(\text{[m}^2\]\n\(C_{IL}\) = mass fraction of an ionic liquid in membrane liquid \([-]\)
\[D_i = \text{diffusivity of component } i \text{ in the liquid membrane } \text{[m}^2\text{h}^{-1}] \]
\[E = \text{mass of extract phase } \text{[kg]} \]
\[m_i = \text{distribution coefficient of component } i \text{ [-]} \]
\[N_{SLM} = \text{stirring velocity in permeation vessel } \text{[h}^{-1}] \]
\[n = \text{number of supporters } \text{[-]} \]
\[P_x = \text{overall permeation coefficient based on mass fraction in raffinate phase } \text{[kg/h m}^{-2}] \]
\[R = \text{mass of raffinate phase } \text{[kg]} \]
\[V = \text{volume } \text{[m}^3] \]
\[v = \text{volume fraction in feed solution } \text{[-]} \]
\[x = \text{mass fraction in raffinate phase } \text{[-]} \]
\[y = \text{mass fraction in extract phase } \text{[-]} \]

\(<\text{Greek}>\)
\[\beta_{2\text{MN}} = \text{separation selectivity of component } i \text{ relative to 2-methylnaphthalene } \text{[-]} \]
\[\rho_{ML} = \text{density of the membrane liquid } \text{[kg/m}^3] \]

\(<\text{Subscript}>\)
\[0 = \text{at initial state} \]
\[1\text{MN} = 1\text{-methylnaphthalene} \]
\[2\text{MN} = 2\text{-methylnaphthalene} \]
\[\text{AO} = \text{absorption oil} \]
\[\text{BP} = \text{biphenyl} \]
\[\text{DBF} = \text{dibenzofuran} \]
\[\text{E} = \text{extraction solvent} \]
\[\text{F} = \text{feed solution} \]
\[\text{Hp} = \text{heptane} \]
\[\text{I} = \text{indole} \]
\[\text{IQ} = \text{isoquinoline} \]
\[\text{N} = \text{naphthalene} \]
\[\text{Q} = \text{quinoline} \]

Literature Cited
PIV MEASUREMENTS OF ATMOSPHERIC TURBULENCE WITHIN AND ABOVE AN OUTDOOR URBAN SCALE MODEL

Student Number: 07M18065 Name: Hiroshi TAKIMOTO Supervisor: Manabu KANDA

屋外模型都市における PIV を用いた大気乱流計測

瀧本 浩史

大气中の熱や物質の輸送は大気が担っている大気の大気環境問題を考える上で、乱流の時空間構造の把握は重要である。本研究では、空間的に高解像度で流速を計測することのできる粒子検出測定法(PIV)を用いて、屋外大気乱流下での模型都市における乱流計測を行った。その結果、屋外特有の風向変動が運動量交換の大きさに与える影響や、非定常的な上昇流の存在が明らかとなった。

1 Introduction

Exchange processes of heat, pollutants, and water between the earth's surface and the atmosphere are mainly induced by turbulent motions. Therefore, understanding of temporal and spatial characteristics of turbulent motion is a fundamental approach for the improvements of atmospheric environment in cities. However, measurements in urban cities are usually tough. It is very difficult to take spatial measurements in cities as compared to laboratory or numerical experiments. Most of the measurements of urban atmospheric turbulence were performed with single point sensors such as ultrasonic anemometer [1], [2], [3]. For the measurements of spatial flow characteristics, a large number of instruments are required.

The main aim of this study is to investigate the flow inside street canyons in more detail, by applying Particle Image Velocimetry (PIV) to an outdoor urban canopy flow. PIV is one of the highly-advanced measurement techniques that can capture flow velocity vectors at high spatial resolution without any disturbances from measurement instruments. Velocities are obtained from image analysis of visualized images of flow fields. This technique has been utilized for turbulence measurements, mainly in laboratory experiments [4], [5]. Despite the high efficiency of PIV, applications of this method for atmospheric turbulence are still rare [6]. Flow visualizations in outdoor environments are difficult, due to highly-fluctuated wind direction and intensive turbulent diffusivity. This is the first application of PIV to the flow characteristics over an outdoor urban-like roughness.

As a counterpart of field experiments, results from wind tunnel experiments are also presented. The settings of the experiments were similar to that of the outdoor case. By comparing these results, the influences of large scale disturbance and wind direction fluctuation are inspected, which are distinctions between field and laboratory experiments.

Unfortunately, field PIV is possible only in nighttime. Results from this study do not include the most part of the effects of solar radiation.

2 Experimental setup

2.1 Field experiment

A PIV measurement was carried out on September 4th, 2008, from 2100 JST to 2200 JST at an outdoor urban scale model (COSMO, Figure 1). COSMO is a simplified model city with no human activity and no

Figure 1. Comprehensive Outdoor Scale MOdel.

Figure 2. Setup of field PIV measurement.
heterogeneity of the surface geometry. It can provide supplementary information to indoor and real-urban experiments, under realistic synoptic conditions of sunshine and wind fluctuations. This scale model consists of 512 pieces of 1.5m (=H; average building height) concrete cubes. That is a fifth of the scale of the typical residential building in Japan [2]. They are aligned in square array on a flat concrete plate with a plan area density of 0.25. The dimensions of the concrete plate are 100m x 50m, and the longitudinal axis corresponds with the dominant wind direction of Asian monsoon. Hereinafter, longitudinal axis and vertical axis of the site are described as x-axis and z-axis. The velocity components of each axis are \(u \) and \(w \), respectively. The target area of the PIV measurement was a vertical cross section 3m (H) x 2.25m (V) at the center of a street canyon (Figure 2). The position of this street canyon was 60m (40H) downstream from the edge of the COSMO.

For flow visualization, continuous-wave Nd:YAG laser (1000mW) was mounted on a tower at a height of 5m. Tracer particles were oil-based fog and they were supplied from multiple fog generators. The tracer was released through perforated PVC pipes (920mm) that were set at the upstream of the measurement section and the inside of the street canyon. To make sure that tracer was sufficiently seeded in highly fluctuating wind direction, PVC pipes were placed such that they can move perpendicularly to the x-axis of the site. The outlet pipes were placed such that they can move between PVC pipes and fog generators. As an imaging device, a 30frame/sec CCD camera (1344 x 1024 pixel\(^2\)) was used.

For complementary measurement of PIV, two sonic anemometer-thermometers, which can measure three-dimensional wind velocity and temperature fluctuation, were set at a height of 1.2H and 2H at the center of the street canyon. The sampling frequency of sonic anemometer was 50Hz.

The measurement time was set to an hour, to ensure the reliable turbulence statistics under the atmospheric environments. The mean wind speed \(U_{2H} \) during the experiment was 0.73m/s at 2H, and the mean wind direction was inclined at 26.2\(^\circ\) to the x-axis of the site. Atmospheric stability was slightly unstable; the value of \(z' / L \) was -0.15. Roughness Reynolds number \(Re_* \) was 68. This value is much larger than the critical Reynolds number [7]. If roughness Reynolds number is larger than a certain critical value \((Re_* = 5.4) \), the flow would be independent of Reynolds number, except the vicinity of the wall.

3 Results and discussion

3.1 Accuracy of PIV

The accuracy of field PIV dataset was examined in comparison with sonic anemometer dataset. PIV data was of a grid point nearby the sonic anemometer at 1.2H. The PIV data was not fully continuous but temporarily lacking mainly due to the highly-fluctuated wind direction along the x-axis of the site. Thus the comparison was done only for the period of valid PIV data. Table 1 shows turbulence statistics obtained from PIV and sonic anemometer measurements. Here \(\sigma_u, \sigma_w \) are standard deviation of \(u, w \), and \(u_* \) is friction velocity defined as \(u_* = (\overline{u'w'})^{1/2} \). Every statistics were closely matching within the error of 10%. Not only mean statistics, instantaneous values also agree well, indicating a good reliability of PIV measurement.

<table>
<thead>
<tr>
<th>(u_*) (\mu)</th>
<th>0.65</th>
<th>0.67</th>
<th>0.96</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_u) (\sigma_u)</td>
<td>0.37</td>
<td>0.38</td>
<td>0.97</td>
</tr>
<tr>
<td>(\sigma_w) (\sigma_w)</td>
<td>0.18</td>
<td>0.17</td>
<td>1.06</td>
</tr>
<tr>
<td>(u_*) (u_*)</td>
<td>0.12</td>
<td>0.11</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Table 1. Comparison of turbulence statistics.
3.2 Mean flow characteristics

Mean velocity vector maps of COSMO and WT are shown in Figure 3. The results are normalized with U_{2H}. Averaging time was 60 minutes for field measurement, and 3 minutes for WT measurement. Both airflows have one big circulation in the street canyons, but their characteristics are not the same. They have distinct influx at the canopy top and streamline near the floor.

![Figure 3. Mean velocity vector maps.](image)

One good reason of these differences is the existence of fluctuation in wind direction. Figure 4 are the conditionally averaged wind vector maps when instantaneous wind direction θ at 2H is (a) $|\theta| < 5^\circ$, (b) $15^\circ < |\theta| < 45^\circ$. θ is the angle between wind direction and x-axis of the site. Both data used threshold of $u_{2H} > 0.5 m/s$. When wind is flowing perpendicularly to the street canyon, lower part of the canyon flow became near-parallel to the floor. In contrast, inclined wind direction makes stronger circulation and stronger influx at the canopy top. That is why mean flow is different between COSMO and WT. Field measurement had inclination and larger fluctuation in wind direction, compared to WT. For further understanding of these differences, 3-dimensionality is needed to be taken into account.

Figure 5 are the contours of Reynolds stress normalized with inner-layer scale u^2. Good agreements between two graphs suggest that Reynolds stress is determined by inner-layer variables and the effect of outer-layer disturbance is small. However, it is found that oblique wind direction leads to larger Reynolds stress. This is due to the transition of surface property with wind direction change. Square array becomes like a staggered array when wind direction is inclined. Staggered array induces higher drag to the flow [8].

![Figure 4. Wind vector maps filtered by wind direction.](image)

![Figure 5. Contour maps of Reynolds stress $u'w'/u^2$.](image)
3.3 Instantaneous flow structures

While one big circulation appeared in the mean flow, snapshots of each moment exhibit various flow structures. Especially, strong upward motions from the bottom of street canyon were most interesting phenomena (Figure 6). Intensities of these events varied widely, but visual inspection indicates that generally they have duration time of 2 to 5 seconds, and interval of 1 to 5 minutes. Similar flushing events were also observed in WT experiments. Although it is difficult to identify the flushing events due to its diversified intensity, one possible definition is "more than 60 % of vectors satisfy the condition of \(w > |u| \) inside the street canyon". This condition still contains arbitrariness, but it detected the flushing events well from WT result. It revealed that the duration time of upward motions in WT were less than quarter of a second, and the frequency was once in 10 to 20 seconds. Considering the structures and the normalized cycles of the phenomena in COSMO and WT, these events seem to be generated by same mechanism.

Most likely cause of flushing events was considered to be Turbulent Organized Structure (TOS) developed in urban boundary-layer [3]. TOS in urban boundary-layer is characterized by its streaky pattern of low-momentum region. Such coherent structures account for most part of momentum transport. From visual inspection of WT results, we found strong correlation between flushing events and large scale low-momentum region. More than 80% of flushing events were occurred under the existence of such large scale turbulent structures.

![Figure 6. Instantaneous flow structure observed in COSMO.](image)

4 Conclusions

In this study, a system of particle image velocimetry for the flow in field urban canopy was constructed. Using this system, atmospheric turbulence flow over urban-like roughness was observed. We exhibited the flow structure minutely, and the results from field experiment were compared with that of wind tunnel experiments. The investigation revealed following results.

1) Flow structure inside the urban canopy was successfully obtained with high spatial resolution. The quality of PIV dataset was good in comparison with the dataset from sonic anemometer.
2) Mean flow structures and Reynolds stresses were found to be similar between field and wind tunnel, although they have a little bit different characteristics. Inclination and fluctuation of wind direction are significant factors for these differences.
3) Strong intermittent upward motions from the bottom of street canyons were observed, which are expected to make a contribution to the ventilation in urban canopies. Our investigation suggested that the turbulent organized structure developed in urban boundary-layer is strongly related to the occurrence of the upward motion.

References

Mechanism of ammonia nitrogen uptake by sterile *Ulva* sp. and its application to water quality control for intensive shrimp culture pond in developing country

Student Number: 07M18071 Name: Shin TAJIRI Supervisor: Ryuichi EGASHIRA

1 Introduction
Since the 1990s the shrimp industry, which has given high profit and foreign exchange to developing countries, has suffered many disease outbreaks[1]. Some shrimp farmers introduced none or quite small water exchange culture system to avoiding the infection of disease. However, employing the system began to cause the serious water deterioration and the water quality control became more important. Ammonia-nitrogen (ammonia-N,AN) excreted by shrimp respiration and from decomposition of bottom sediment is main cause of water deterioration. Ammonia-N is toxic to fishes and crustaceans[2] and even if the concentration is low, the growth of shrimp is inhibited[3]. Most of nitrogen component in the shrimp feed supplied into pond is finally discharged into the pond as the form of ammonia-N through excretion by shrimp and decomposition of accumulated sediment.

In this study, we investigated mechanism of ammonia nitrogen uptake by sterile *Ulva* sp. and simulated water quality control in basis of nitrogen balance and ammonia-N uptake mechanism of alga.

2 Mechanism of ammonia nitrogen uptake by sterile *Ulva* sp.

2.1 Materials
Sterile *Ulva* sp. collected from April to November 2008 at Kanazawa Bay (Yokohama, Japan 35°20'32N, 139°38'32E). Commercial sea salt was used to prepare artificial seawater (salinity: 30‰).

2.2 Experimental

2.2.1 Characterization of alga
A vessel made of glass of which capacity 5×10⁻³ m³ and used to store algae. Light source was 400W metal halide lamp. Elemental analysis was carried out by CHN corder MT-6. Chlorophyll concentration was determined by Scor/Unesco method.

2.2.2 Distribution of ammonia-nitrogen between culture medium and nitrogen pool in alga and permeation through surface film of algae
Algae were cultivated for 2h in artificial seawater containing 1mM methionine sulfoximine, which inhibits the assimilation of ammonia-N, before uptake runs. Concentrated ammonia-N solution added to culture medium at the beginning of uptake run and measured ammonia-N concentration of culture medium.

Table 2.2.2-1 shows the principal conditions of uptake runs. Some conditions were assumed daytime, others were nighttime. In all runs, the algae without ammonia-N assimilation ability were used to know the distribution equilibrium of ammonia-N between the culture medium and the ammonia-N pool in alga. After equilibration, ammonia-N excretions were also conducted by exchanging the medium with ammonia-N free seawater.

2.3 Results and discussion

2.3.1 Characterization of alga
Table 2.3.1-1 shows of mass of Carbon, Hydrogen, and Nitrogen per unit dry biomass. Wt% of CHN decreased with increase of stock cultivation time. This is considered those nutrients, which were pooled in the sea, were exhausted for growth.

Table 2.3.1-2 shows amount of chlorophyll-a,b,c per unit dry biomass. There is not great differences of chlorophyll concentrations in each sample of alga.
2.3.2 Distribution of ammonia-nitrogen between culture medium and nitrogen pool in alga and permeation through surface film of algae

Figure 2.3.2-1 shows the equilibrium relation between ammonia-N concentrations in culture medium and in the ammonia-N pool of alga. In condition assumed daytime, equilibrium ammonia-N concentrations in alga after uptake were higher than those after excretion. Equilibrium ammonia-N concentrations of internal algae in condition assumed daytime were higher than that concentration in condition assumed nighttime. These differences of equilibrium relation were considered to be chemical potential deference between external and internal algae.

Figure 2.3.2-2 shows the relation between ammonia-N uptake rate and concentration difference $C_{\text{TAN}} - C_{\text{AN}}$ in algae. Assimilation rate was estimated by the equilibrium relationship after uptake given in Fig.2.3.2-1. Mean gradient of collinear approximations not through origin was 0.73 h\(^{-1}\).

\[
\text{Equilibrium ammonia-N concentrations of internal algae is mean assimilation rate between uptake rate and concentration difference, } C_{\text{TAN}} - C_{\text{AN}}\ldots
\]

Table 2.3.3-1 Experimental condition

<table>
<thead>
<tr>
<th>Initial concentration of culture medium $C_{\text{TAN,0}}$ [kg-N m(^{-3})]</th>
<th>0.25~2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture density of alga ρ_{al} [kg DM m(^{-3})]</td>
<td>0.07~0.66</td>
</tr>
<tr>
<td>Cultivation time [h]</td>
<td>7~12</td>
</tr>
<tr>
<td>Light intensity, PPF [µmol s(^{-1}) m(^{-2})]</td>
<td>1800 5×</td>
</tr>
<tr>
<td>Temperature [K]</td>
<td>303 298</td>
</tr>
</tbody>
</table>

\[
\text{Relation between mean ammonia-N concentration in alga and AN assimilation rate}
\]

2.3.3 Assimilation of ammonia-nitrogen in alga

The material balance in a unit volume of the culture medium is given by,

\[
\rho \frac{dC_{\text{TAN}}}{dt} = -\frac{dC}{dt} + \rho \frac{dC_{\text{AN}}}{dt} + \rho \frac{dC_{\text{TAN}}}{dt}
\]

where ρ_{TAN} is ammonia-N uptake rate by alga, C_{TAN} is the ammonia-N concentration in alga, and ρ_{AN} is the assimilation rate. Integration of this equation from time t_1 to t_2 leads to,

\[
C_{\text{TAN}}(t) + \rho C_{\text{TAN},1} = C_{\text{TAN},2} + \rho C_{\text{TAN},2} + \rho \frac{C_{\text{TAN},2}}{t_2 - t_1}
\]

where ρ_{TAN} is mean assimilation rate between t_1 and t_2. Figures 2.3.3-1 and 2.3.3-2 show the time courses of ammonia-N concentration in medium and those in alga with assimilation, respectively. Figure 2.3.3-3 shows relation between mean ammonia-N concentration in alga and ammonia-N assimilation rate. Assimilation rate increased with increase of ammonia-N concentration in alga at first 1 hour. However, assimilation rates rapidly decreased with time. This decrease is provably due to exhaustion of other nutrients such as carbon.

3 Water quality control for shrimp pond

3.1 Nitrogen balance in shrimp pond

Figure 3.1-1 shows a concept of nitrogen dynamics model. Nitrogen as the form of the shrimp feed are supplied into pond. Much of feed is eaten by shrimp(1), and a portion of feed is uneaten(2). Shrimp excretes ammonia-N through respiration (4) and other nitrogen metabolite(feces, shed shell etc.)(3). Ammonia-N also generate from sediment decomposition(7). Ammonia-N in water column was removed by algal uptake(5), water exchange(8), and other removal process(9). Algae are removed from pond(6) as one of final form of nitrogen.
3.2 Basic equation and calculation

Material balance:
The material balance in a unit volume of pond water is given by,
\[\frac{dC_{TAN}}{dt} = r_{rmn,TAN} - r_{total,remove} \]
where \(r_{total,remove} \) is generation rate of ammonia-N, \(r_{total,remove} \) is removal rate of ammonia-N.

Ammonia-N generation
Generation rate of ammonia-N is given by,
\[r_{total,TAN} = r_{e,TAN} + r_{sed,TAN} \]
where \(r_{e,TAN} \) is rate of ammonia-N excreted by shrimp respiration, \(r_{sed,TAN} \) is rate of ammonia-N generated by sediment decomposition.

Ammonia-N removal
Removal rate of ammonia-N is given by,
\[r_{total,remove} = \rho_u \pi_{u,TAN} + fC_{TAN} + \omega C_{TAN} \]
where \(\pi_{u,TAN} \) is average uptake rate, \(f \) and \(\omega \) are rate constants of water exchange and other removal process, respectively. In the case that saturation ratio of photosynthesis affect uptake performance, \(\pi_{u,TAN} \) is given by,
\[\pi_{u,TAN} = q_{light} \pi_{u,TAN} \]
where \(q_{light} \) is average saturation ratio of photosynthesis (\(q_{light} \) equaled 1 in case of not taking the effect of saturation ratio of photosynthesis on uptake into account.) Relation between saturation ratio of photosynthesis \(q_{light} \) and light intensity is approximated following equation,
\[q_{light} = \frac{p}{p_{MAX}} = \frac{I}{I + K_{light}} \]
where \(I \) is light intensity at specific depth from pond surface. \(K_{light} \) is constant depending on temperature. \(I \) can be described by Beer-Lambert law as,
\[I = I_0 \exp(-kz) \]
where \(I_0 \) is light intensity of pond surface, \(k \) is overall light extinction coefficient, \(z \) is distance from pond surface. \(k \) is given by,
\[k = k_U + k_{other} \]
where \(k_U \) and \(k_{other} \) is light extinction coefficient of alga and pond water, respectively. \(k_U \) is determined by chlorophyll concentration in alga and \(\rho_U \) and given by,
\[k_U = k_{CChl} \rho_U C_{Chl} \]
where \(k_{CChl} \) is light extinction coefficient per unit mass of chlorophyll-a, \(C_{Chl} \) is chlorophyll-a amount per unit dry biomass of alga. \(\pi_{u,TAN} \) is, from relation between \(\pi_{u,TAN} \) and overall concentration difference, given by
\[\pi_{u,TAN} = P_u \left(C_{TAN}^* - C_{TAN} \right) \]
where \(P_u \) is overall mass transfer coefficient. Change rate of ammonia-N concentration in alga can be obtain from material balance and given by below equation including growth dilution of ammonia-N in alga pool,
\[\pi_{u,TAN} = q_{light} \pi_{u,TAN} \]
From Fig. 4-3, assimilation rate is almost the same as uptake rate and that can be written by,
\[\pi_{u,TAN} = \pi_{a,TAN} \]
where \(\pi_{a,TAN} \) is maximum assimilation rate of ammonia-N. Calculation
Parameters of equations in chapter3.2 were estimated from chapter2 and cited previous study[4][5].

Table3.2-1 shows the parameters of fixed value in all calculation. Penaeus monodon was selected as culture target. Cultivation time was 120days. It was assumed nitrogen input was only feed and was assumed 20% of total nitrogen input was assimilated by shrimp and 10% of that was un eaten by shrimp.

Table3.2-2 shows the parameters that were varied in each calculation run. (1) was calculated as standard condition, (2) as prediction of effect of culture density of shrimp, (3) effect of saturation ratio of photosynthesis, (4) effect of water exchange and other removal process, (5) effect of ratio of nitrogen metabolite through respiration to total nitrogen metabolite, (6) effect of water turbidity, and (7)effect of algal harvest.

<table>
<thead>
<tr>
<th>Table3.2-1 Parameters of fixed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{mnbn}[\text{kg-N h}^{-1}\text{kg-shrimp}^{-1}])</td>
</tr>
<tr>
<td>(C_{Chl}[\text{kg-chl kgDM}^{-1}])</td>
</tr>
<tr>
<td>(\rho_u [\text{h}^{-1}])</td>
</tr>
<tr>
<td>(\pi_{a,TAN,MAX} [\text{kg-N h}^{-1}\text{kgDM}^{-1}])</td>
</tr>
<tr>
<td>(R_{biomass,N} [\text{kgDM kg-N}^{-1}])</td>
</tr>
<tr>
<td>(h [\text{m}])</td>
</tr>
<tr>
<td>(k_{Chl}[\text{kg-Chl}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(I_{s,day} [\text{mmol s}^{-1}\text{m}^{-2}])</td>
</tr>
<tr>
<td>(I_{s,night} [\text{mmol s}^{-1}\text{m}^{-2}])</td>
</tr>
<tr>
<td>(T_{day} [\text{K}])</td>
</tr>
<tr>
<td>(T_{night} [\text{K}])</td>
</tr>
<tr>
<td>(y [-])</td>
</tr>
<tr>
<td>(r_e [\text{h}^{-1}])</td>
</tr>
</tbody>
</table>
In the case that harvest of Figure 3.3-4 Limit culture density of shrimp was increase with calculation run(2)(3). Limit culture density of shrimp, density of algae and limit culture density of shrimp which was defined that maximum value of average density of shrimp.

3.3 Results and Discussion

Figure 3.3-1 shows effect of culture density of shrimp(calculation run(1)(2)). Ammonia-N concentration increase with time, also increase with increase of culture density of shrimp.

Figure 3.3-2 shows relation between initial culture density of algae and limit culture density of shrimp (calculation run(2)(3)). Limit density of shrimp, which was defined that maximum value of average ammonia-N concentration in nighttime does not exceed 0.001kg-N m⁻³, slightly decreased with degree of light limitation \(\frac{q_{\text{TAN}}}{q_{\text{light}}} \) increased by water exchange and decreased by light limitation.

Figure 3.3-3 shows relation between ratio of nitrogen metabolite through respiration to total nitrogen metabolite \(q_{\text{TAN}} \) and limit of culture density of shrimp. Limit culture density of shrimp was increase with increase of \(q_{\text{TAN}} \).

Figure 3.3-4 shows relation between light extinction coefficient of pond water and limit of culture density of shrimp. In the case that harvest of algae was not conducted, final culture density of algae exceeded 2.0 kgDM m⁻³. This range of culture density may inhibit the shrimp culture management.

4 Conclusion

We measured the ammonia-N distribution equilibrium relation between culture medium and in algae, ammonia-N permeation rate, and assimilation rate. Secondly, we carried out calculation of water quality based on these data.

The water quality control method by using sterile ulva can remove ammonia-N in shrimp pond more effectively

Nomenclature

- \(q_{\text{TAN,N}} \): Nitrogen metabolite excretion rate \([\text{kg-N h}^{-1}\cdot\text{kg-shrimp}^{-1}]\)
- \(q_{\text{light}} \): Allometric scaling of metabolism
- \(C_{\text{TAN}} \): Ammonia-N concentration \([\text{kg-N} \cdot \text{m}^{-3}]\)
- \(C_{\text{TAN},\text{night},\text{MAX}} \): Average ammonia-N concentration in nighttime \([\text{kg-N} \cdot \text{m}^{-3}]\)
- \(C_{\text{TAN},\text{night},\text{AVE}} \): Maximum value of average ammonia-N concentration in nighttime \([\text{kg-N} \cdot \text{m}^{-3}]\)
- \(C_{\text{TAN}} \): Ammonia-N concentration in algae \([\text{kg-N} \cdot \text{kgDM}^{-1}]\)
- \(C_{\text{TAN},\text{alg},\text{MAX}} \): Equilibrium ammonia-N concentration in algae \([\text{kg-N} \cdot \text{kgDM}^{-1}]\)
- \(C_{\text{Chl-a}} \): Chlorophyll concentration in algae \([\text{kg-Chl-a} \cdot \text{kgDM}^{-1}]\)
- \(I_{\text{cultivation}} \): Cultivation time\([\text{day}]\)
- \(f \): Water exchange rate \([\text{h}^{-1}]\)
- \(H_0 \): Harvest rate of algae\([\text{kgDM h}^{-1}]\)
- \(h \): Pond depth\([\text{m}]\)
- \(f \): Light intensity \([\mu \text{mol s}^{-1} \cdot \text{m}^{-2}]\)
- \(f \): Light extinction coefficient \([\text{m}^{-1}]\)
- \(f \): Light extinction coefficient of chlorophyll \([\text{m}^{-1} \cdot \text{kg-Chl-a}]\)
- \(f \): Light extinction coefficient of pond water \([\text{m}^{-1}]\)
- \(k_{\text{light}} \): Constant of approximative \([\text{mol} \cdot \text{m}^{-3} \cdot \text{kg}^{-1}]\)
- \(M \): Shrimp mass \([\text{kg-shrimp}]\)
- \(M_{\text{MIN}} \): Nitrogen in sediment per unit volume of pond water\([\text{kg-N} \cdot \text{m}^{-3}]\)
- \(o \): Overall Rate constant of other ammonia-N removal process \([\text{h}^{-1}]\)
- \(p \): Photosynthesis rate \([\mu \text{mol} \cdot \text{O}_2 \cdot \text{cm}^{-2} \cdot \text{h}^{-1}]\)
- \(p \): Saturated photosynthesis rate \([\mu \text{mol} \cdot \text{O}_2 \cdot \text{cm}^{-2} \cdot \text{h}^{-1}]\)
- \(P_{\text{c}} \): Overall mass transfer coefficient \([\text{h}^{-1}]\)
- \(q_{\text{TAN}} \): Saturation ratio of photosynthesis \([-]\)
- \(q_{\text{TAN},\text{night}} \): Ratio of nitrogen metabolite through respiration to total nitrogen metabolite \([-]\)

Literature Cited

1 Introduction

The Mahalanobis distance [2], which is a distance normalized by a variance-covariance matrix of a distribution, is widely used for pattern recognition and data analysis. It enables to improve the accuracy of recognition comparing to the Euclidean distance.

For example, if two vectors differ in the direction in which the variance is small, the distance from the viewpoint of probability (Fig.1 (a)) may be large from the viewpoint of Euclidean distance (Fig.1 (b)). It is natural to evaluate the distance not along a straight line but along a curve. In order to realize such a distance, the Mahalanobis metric was proposed.

Figure 1: Mahalanobis metric

In the n-dimensional Euclidean space, the normal distribution with an average μ and a variance-covariance matrix Σ is expressed by the p.d.f.:

\[p(x) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \exp(-\frac{1}{2}(x-\mu) \Sigma^{-1} (x-\mu)) \]

where \(\langle \cdot , \cdot \rangle \) denotes the inner product and Σ is assumed to be regular. Let I be the identity matrix. When x is mapped to y by a linear transformation \(y = \Sigma^{-1/2} x \), p is transformed to the p.d.f. of a normal distribution of which variance-covariance matrix is I. The inner product that expresses the Mahalanobis distance is given as the pull back of the inner product as \(\langle y, y' \rangle = \langle \Sigma^{-1} x, x' \rangle \).

The equation of geometrically local isotropic independence(GLII) was proposed to define a normal distribution in a manifold [5]. It provides a normal distribution of which variance-covariance matrix is \(aI \) (\(a > 0 \)) in the Euclidean space, the von Mises-Fisher distribution on a hyper-spherical surface, and an distribution proportional to \(e^{-x^2 \cos b} \) in the Lobachevsky space. The Mahalanobis metric equation was defined by extending the linear transformation to a diffeomorphism and using the equation of GLII [5]. It is remarkable that its differential equation does not depend on the coordinate system or the original metric. Furthermore, the diffeomorphism will disappear in it.

In this paper, a p.d.f. is estimated from sample points by maximum likelihood approach, and we conduct an experiment to solve the mahalanobis metric equation.

2 Mahalanobis metric equation

A normal distribution is characterized by the equality between the sample mean and the maximum likelihood estimator (C.F. Gauss), by isotropic independence (Maxwell), by the entropy, or by the central limit theorem [1], [3]. Let \(X_1 \) and \(X_2 \) be random variables and \((Y_1, Y_2) \) be the rotation of \((X_1, X_2) \) by an angle \(\theta \) (\(\neq 0, \pm \pi/2, \pm 2\pi/2, \pm 3\pi/2, \cdot \cdot \cdot \)). If \(X_1 \) and \(X_2 \) are independent and \(Y_1 \) and \(Y_2 \) are also, then the distribution of \(X_1 \) and \(X_2 \) should be normal and its variance-covariance matrix is \(aI \) (\(a > 0 \)). By using this characterization, Maxwell provided the velocity distribution of the ideal gas.

Here, we consider an n-dimensional Riemannian manifold [4]. We use the summation rule in the notation of equations. For a small displacement \(dx^\mu \) in a coordinate system \(\{x^\mu \} \), its distance is given by \((ds)^2 = g_{\mu \nu} dx^\mu dx^\nu \). \(g_{\mu \nu} \) is called the metric tensor. Its inverse tensor is denoted by \(g^{\mu \nu} \). Let g be the determinant of \(g_{\mu \nu} \).

The covariant differential for an anvariant vector field \(X^\mu \) is given by \(\nabla_\nu X^\mu = \partial_\nu X^\mu + \Gamma^\mu_{\nu \beta} X^\beta \), where \(\partial_\nu = \frac{\partial}{\partial x^\nu} \) and \(\Gamma^\mu_{\nu \beta} \) is the connection [4]. The Levi-Chivita connection can be derived from \(g_{\mu \nu} \), as

\[\Gamma^\mu_{\nu \beta} = \frac{1}{2} g^{\rho \sigma} (\partial_\mu g_{\rho \nu} + \partial_\nu g_{\rho \beta} - \partial_\rho g_{\mu \nu}). \]

In an Euclidean space, if a p.d.f. \(p(x^1, x^2) \) satisfies

\[\partial_1 \partial_2 \log p(x^1, x^2) = 0 \]

it is clear that \(x^1 \) and \(x^2 \) are independent (\(p(x^1, x^2) = p_1(x^1)p_2(x^2) \)). Based on the characterization by Maxwell and eq(3), the equation of GLII for a normal distribution in a manifold is defined.
3 Mahalanobis metric by Newton-Raphson method

We explain an algorithm to solve the Mahalanobis metric equation by the Newton-Raphson method. Here, we discuss the case when the dimension of the space is two. For brief, $\tilde{g}_{\mu\nu}$, $\tilde{\nabla}_\mu$, etc. are denoted without $\tilde{\cdot}$. We expand the Mahalanobis metric equation (4) and let its left hand side be $F_{\mu\nu}$. Then, we have

\[
F_{11} = \partial_1 \partial_1 \log p - \Gamma_1^1 \partial_1 \log p - \Gamma_1^1 \partial_2 \log p + \Gamma_1^1 (\Gamma_1^1 + \Gamma_2^2) + \Gamma_2^2 (\Gamma_1^2 + \Gamma_2^2)
\]

\[
F_{12} = \partial_1 \partial_2 \log p - \Gamma_1^2 \partial_1 \log p - \Gamma_2^2 \partial_2 \log p + \Gamma_2^2 (\Gamma_1^1 + \Gamma_2^2) + \Gamma_2^2 (\Gamma_1^2 + \Gamma_2^2)
\]

\[
F_{22} = \partial_2 \partial_2 \log p - \Gamma_2^2 \partial_1 \log p - \Gamma_2^2 \partial_2 \log p + \Gamma_2^2 (\Gamma_1^1 + \Gamma_2^2) + \Gamma_2^2 (\Gamma_1^2 + \Gamma_2^2)
\]

Furthermore, we define the 3(\(N_1 - 4\))-(\(N_2 - 4\))-dimensional vector by

\[
G^\mu = (g_{11}(s_1), g_{11}(s_2), \ldots, g_{11}(r_{(N_1 - 4)(N_2 - 4)})),
\]

\[
g_{12}(s_1), g_{12}(s_2), \ldots, g_{12}(r_{(N_1 - 4)(N_2 - 4)})),
\]

\[
g_{22}(s_1), g_{22}(s_2), \ldots, g_{22}(r_{(N_1 - 4)(N_2 - 4)})).
\]

Let $D^{(0)}$, $F^{(0)}$, and $G^{(0)}$ be the values of D, F and G after the l-th iteration, respectively. The algorithm with a relaxation parameter ϵ is expressed as

\[
G^{(l+1)} = G^{(l)} - \epsilon \left((D^{(0)})^T D^{(0)})^{-1} (D^{(0)})^T F^{(l)} \right).
\]

4 Probability density estimation

We propose an estimation method of p.d.f. for Mahalanobis metric equation from sample points in 2-dimensional-lattice by maximum likelihood approach. p_A and p_B stand for values of p.d.f. on sample points and grid points, respectively. We let $I_A = \log p_A$, $I_B = \log p_B$. Let n denote the number of sample points, and a log likelihood $L(I_A)$ is defined as

\[
L(I_A) = \log(p_{S_1}, p_{S_2}, \ldots, p_{S_n}) = \sum_{k=1}^{n} I_{S_k}.
\]

I_A has to be calculated from I_S because we maximize $L(I_A)$ under the condition of

\[
\sum_{\mu=1}^{N_1} \sum_{\nu=1}^{N_2} p_{G_{\mu\nu}} = 1.
\]

Here, we provide a matrix to calculate I_S from I_A by the least square approach and solve this inverse problem. Now, we assume that I_A is given in 2-dimensional lattice, and calculate the matrix A which expresses the interpolation from I_A into I_S by least square approach with the nearest 3 x 3-grid points of the sample point as

\[
I_S = AI_A.
\]

Next, we let that I_A is smooth, so assume that its third derivatives are small. Matrices $D_A^\mu_\nu$, $D_A^\mu_\nu$, $D_A^\mu_\nu$, and $D_A^\mu_\nu$, which expresses the differentials of rank 3 as
\[\frac{\partial^3 \gamma_2}{\partial x^3} l_G = D_{x'x'x'} l_G, \quad \frac{\partial^3 \gamma_2}{\partial x^3(x')} l_G = D_{y'y'x'} l_G \]
\[\frac{\partial^3 \gamma_2}{\partial x^3(x')} l_G = D_{y'y'x'} l_G, \quad \frac{\partial^3 \gamma_2}{\partial x^3(x')} l_G = D_{y'y'x'} l_G. \]

When we let \(D_{x'x'x'} = D_{x'x'x'} + D_{x'x'x'} + D_{x'x'x'} + D_{x'x'x'} \), we have
\[\frac{\partial^3 \gamma_2}{\partial x^3(x')} l_G = \left(D_{x'x'x'} \cdot l_G + D_{x'x'x'} \cdot l_G \right) \]
\[+ (D_{x'x'x'} \cdot l_G) + (D_{x'x'x'} \cdot l_G) \]
\[= (D_{x'x'x'} \cdot l_G, D_{x'x'x'} \cdot l_G). \]

Considering with eqs. (13) and (14), we obtain the minimization problem of \(J_C \)
\[J_C(l_G) = \|A l_G - I_s\|^2 + \mu \|D_{x'x'} l_G\|^2 \]
\[= \langle A^T A l_G, l_G \rangle - 2 \langle A^T I_s, l_G \rangle \]
\[+ \|I_s - I_s\| + \mu \|D_{x'x'} l_G, l_G \| \]
(15)

By the variation of \(J_C \), we have the matrix \(B \) for estimating \(l_G \) from \(I_s \) as \(I_s = BL_s, \mu \) stands for a smoothing parameter.

We define the \(n \)-dimensional vector by
\[J_L = \left(\frac{\partial J_L}{\partial x_1}, \ldots, \frac{\partial J_L}{\partial x_n} \right)^T. \]
(16)

Let \(l_s^{(1)} \) and \(J_L^{(1)} \) be the values of \(I_s \), \(I_G \) and \(J_L \) after the \(k \)-th iteration, respectively. After we adjust \(l_s^{(1)} \) in condition of normalizing \(l_G = B l_s^{(1)} \), update \(l_s^{(1)} \) by the steepest descent method with a parameter \(\lambda \) as
\[l_s^{(1)} = l_s^{(1)} + \lambda J_L^{(1)}. \]
(17)

5 Experimental results

In experiment, we generate sample points along a normal isotropic distribution of which variance is 1 in the coordinate system \(\{x^2\} \). Next, we let variances in the direction of \(x^1 \) and \(x^2 \) be \(\sigma_1^2 \) and \(\sigma_2^2 \). We define an coordinate system \(\{y^2\} \) with rotation of \(\{x^2\} \) by \(\theta \). In addition, \(\{x^1\} \) is given by a non-linear transformation of \(\{y^1\} \). We assume that sample points in \(\{x^1\} \) are obtained. We define a coordinate transform from \(\{y^1\} \) into \(\{z^1\} \) as
\[z^1 = y^1 \]
\[z^2 = y^2 + \beta h(y^1) h(y^2) \]
with constants \(\alpha \), where
\[h(y) = \begin{cases} e^{\frac{y - 1}{\alpha - y}} & (-\alpha < y < \alpha) \\ 0 & \text{(else)} \end{cases} \]
(20)

To estimate p.d.f. we consider the coordinate system \(\{w^2\} \) given by a liner whitening of sample points of which variance is \(\gamma^2 \). And the proposed algorithm is applied to the sample points.

We calculate the Mahalanobis metric with the estimated p.d.f. In this experiment, we set \(\alpha = 27, \beta = 2.7, N_1 = N_2 = 55, \sigma_1^2 = 2.5, \sigma_2^2 = 1, \theta = \pi/6, \gamma = 3, \lambda = 0.1 \) and \(\epsilon = 0.05 \). The number of sample points generated in coordinate system \(\{x^2\} \) is 500. The \(53 \times 53 \)-lattice is assumed to be the region of \([-26, 26] \times [-26, 26] \) in the coordinate system \(x^2 \).

Figs.2 (a), (b), and (c) illustrate the results of estimated p.d.f. with \(\mu = 200 \). Figs.2 (d) and (g) illustrate the calculated \(g_{\mu} \) with \(\mu = 200 \). Figs.2 (e) and (g) illustrate the calculated and the original \(g_{\mu} \). Figs.2 (h) and (i) illustrate the squared errors of \(g_{\mu} \) and \(F_{\mu} \) with the number of iterations.

6 Conclusion

From those results, we can obtain the Mahalanobis metric by estimating the p.d.f. from sample points and solving the Mahalanobis metric equation. However, the method does not have enough accuracy. Then, it is necessary to survey parameter and to introduce the Newton method to maximum likelihood approach.

References

Figure 2: Experimental results
LAGRANGIAN HUMAN METEOROLOGY

1 Introduction

Due to the global warming and the heat island phenomenon, problems such as warmer environments and the increasing incidence of heat stroke patients are usual in several Asian mega-cities. Monitoring the meteorological information in cities is important for urban environmental amenity and human health. However, official meteorological information can be largely different from actual micro-climate in urban canyons where we are living, because the data are measured over managed grasslands. In addition, our physiological response to micro-climate can be different by individuals depending on their lagrangian movements and physical and mental conditions. Thus, lagrangian observational data along human pathways are better suitable for urban meteorological information on health rather than that from fixed-point observations in Euler sense. Here I propose a new lagrangian concept for urban bio-meteorology named "Lagrangian Human Meteorology (LHM)".

2 Concept of LHM

The concept of LHM is to investigate continuous changes of micro-climate and the dynamical physiological response along human pathways carrying small bio-meteorological sensors. The sensors monitor ambient temperature (Ta), relative humidity (RH), wind velocity (U), mean radiative temperature (MRT), body temperature (Tb), heart rate (HR), and blood pressure (BP). The perspective merits of LHM include contributions to 1.) self-monitoring and precaution of health disorder such as heat stroke and 2.) evaluation of actual micro-climate absent of eulerian fixed-observation points.

3 Lagrangian observation

To confirm the effectiveness of LHM, The author conducted a lagrangian observation in central Tokyo on a typical fair day in summer, 20th August in 2008. Measuring items are represented in Table 1. All of the meteorological sensors were packed in a carry bag (Figure 1). The summary of the event records and the observational route map are shown in Table 2 and Figure 2, respectively.

3.1 Results and Discussion

Standard effective temperature (SET*) and Ta are focused here for micro-climate variables (Figure 3 (a) and 4). SET*
is a physical index for thermal sensitivity based on mathematical models of both human thermoregulatory mechanism and energy budget on human body. SET* is computed from Ta, RH, U, and MRT. Figure 3 (a) shows the time series of SET* and Ta from the lagrangian observation. Ta at Tokyo meteorological observational site is also plotted in Figure 3 (a) for comparison of the lagrangian data and the eulerian data. Time series of the physiological responses are plotted in Figure 3 (b).

(1) Micro-climate in train and station platform in rush hour

The data on 7:06-8:31 include trains and station platforms in
rush hour. 3-times leap of SET* and Ta occurred in the
platform of Ookayama station (32.0 C, Figure 4 (a), a),
Nagatsuda station (31.8 C, Figure 4 (a), b), and Shibuya
station (34.4 C, Figure 4 (a), c), respectively. Even in the
early morning, Ta in Shibuya-station platform was higher
than the daily maximal temperature in Otemachi-
meteorological site by 2 C, and SET* was over 37 C. It
involved heat stroke risk. Average Ta in a train for Shibuya
of Tokyu Denentoshi line (STD) was 27.8 C (Figure 4 (a),
c’) and higher than the preset temperature of the a
ir
conditioner (25~26 C, Tokyu railway company HP).
Meanwhile, average Ta in trains for Futakotamagawa of
Tokyu Oimachi line (FTO) and for Nagatsuda of Tokyu
Denentoshi line (NTD) was 25.2 C (Figure 4 (a), a’) and
26.4 C (Figure 4 (a), b’), respectively, and ranged in the
preset temperature. The congestion degree in the train may
affect the thermal environment in the trains, which means that, the anthropogenic heat emission from passengers may be a non-negligible factor for the micro-climate in trains.

(2) HR and BP in train and station platform
The values of HR and BP in STD were high compared to those in NTD and FTD (Figure 3 (b), region enclosed by broken line); average HR in STD is 97 bpm and 88 bpm in NTD and FTO; average systolic BP in STD is 111 mmHg and 104 mmHg in NTD and FTO. Figure 5 shows the relation between HR and SET* and between BP and SET*. HR and systolic/diastolic BP appeared to be correlated with SET*. Some studies reported that the enhancement of heat stress resulted in an increase of HR but a small decrease of BP. However, our findings are not consistent with them. These previous surveys also assessed the relation between physical-mental stresses and HR/BP, and inferred that exercises increase both HR and BP and acute mental stresses increase BP. Therefore, the current results may suggest that the influence of physical/mental stress in the packed train might lead to the increase of both HR and BP rather than influences of micro-climate in the trains; SET* in the train and the station platform air-conditioned is likely to be influenced by the congestion degree, namely anthropogenic heat emission from passengers. Human physiology is affected by micro-climate, physical/mental conditions, and activities of subjects. Further studies on human physiology in commute trains are required.

(3) Micro-climate in street canyons
The data on 11:50~15:50 include the street canyons in Shibuya and Harajuku (Figure 4 (b) and (c)). Except for the indoor environment, Ta from the lagrangian observation was higher than Ta at Otemachi by 3 C at a maximum. Figure 4 (b) and (c) indicate the subject underwent the abrupt changes of thermal environment (over 10 C for Ta and SET*). Unfortunately, this measurement system could not detect the exact response of BP and HR accompanied by abrupt transition of heat environment. Sudden heat exposure enhances the heat stroke risk (guideline for heat stroke prevention by Japanese Society of Biometeorology), and vital signs may be affected by abrupt shift of micro-climate. Continuous measuring system of vital signs is necessary for lagrangian observations. Possibilities of developing such measuring system are discussed in Chapter 4.

4 Re-development of the measurement system
The sensors used in the observation were not specialized for lagrangian measurements and the observational system was heavy and bulky. In addition, the current BP and HR sensor operates intermittently and it is difficult to detect the continuous change of BP and HR accompanied by abrupt shift of micro-climate. In order to solve such problems, a prototype of the bio-meter was developed. Figure 6 shows the appearance of the instrument. Specific features of the prototype are as follows; (1) it can measure Ta, RH, MRT, and HR, (2) the data are stored up to 2 GB, (3) it is much smaller and lighter than the current measurement system (72 x 75 x 25 mm, 110 g). A wind velocity and BP sensors are to be mounted on the compact measurement system.

5 Conclusions
I proposed the new lagrangian concept for urban biometeorology. The concept is to investigate continuous changes of micro-climate and the physiological response along human pathways carrying a compact measurement system. The first results of the observation suggested that LHM has a potential to evaluate the micro-climate and physiological response along human pathways and contribute to urban biometeorology.

References
Influence of mixing γ-C$_2$S on Cl$^-$ penetration in concrete cured using autoclave

Student Number: 07M18102 Name: Masayo Horioka Supervisor: Nobuaki OTSUHI

γ-C$_2$S の混和が高湿圧養生を用いたセメント系材料の Cl$^-$浸透性に及ぼす影響

Now, in order to improve the durability of concrete structures, it is important to consider the resistivity against external degrading materials. In has been shown in previous research, that the use of the material called γ-C$_2$S (γ-2CaO·SiO$_2$) as admixture for concrete, improves the durability of the member because of the 2 abilities of γ-C$_2$S for durability: (1) it reacts with CO$_2$ and become CaCO$_3$ (vaterite); (2) γ-C$_2$S assist in making tobermorite under autoclave curing. Crystalline tobermorite has a stable structure so it can affect the dimensional stability and chemical stability of the specimen.

The group of Morioka, Yokozeki and Watanabe1,2 made an attempt at improving the strength and permeability of the concrete by exposure of specimen to carbonation with γ-C$_2$S. Further research was done on the utilization of γ-C$_2$S in concrete by adding the utilization of autoclave curing. In the study by Saito et. al.3,4, it was shown that γ-C$_2$S can possibly make a more durable member. But the possibility only considered the neutralization test in durability. So far, consideration to relation of production, pore distribution, and permeability of CT, as important deterioration factors in reinforced concrete are not yet done. Moreover, the examination of the use of γ-C$_2$S for concrete is not yet performed.

Therefore in this study, the technique of using γ-C$_2$S was applied for concrete pile. The concrete pile was also cured by autoclave. The main objective of this study is to design a high-durability concrete pile by investigating the optimum replacement ratio of γ-C$_2$S. Specific objectives are:

1. To design a paste specimen with a surface densified with vaterite and with core structure made of tobermorite using 180$^\circ$C autoclave curing and CO$_2$ acceleration.
2. To investigate the relationship between pore distribution and the permeability of chloride ion of paste specimen with γ-C$_2$S.
3. To compare the chloride ion permeability between γ-C$_2$S containing paste specimen and RC piles, and using this conclusion, design a high-durability RC pile.

2. The change of product in carbonated cement paste with γ-C$_2$S

2.1 Methods of manufacturing the test specimen

2.1.1 XRD

Paste test specimens containing OPC and γ-C$_2$S at substitution levels of 0, 20, 40, 60 and 80% were prepared as the source of lime. The lime source (OPC+γ-C$_2$S) and α-quartz were mixed in a ratio of 5:5 and deionized water was added to the powder at water-to-powder ratio of (w/p)of 0.3 (mass ratio). The prepared paste was cast in a mould with dimensions of 1 x 1 x 8 cm and allowed to harden at 100%RH for 4 hours at 65$^\circ$C. The hardened paste specimen was removed from the mould and autoclaved for 8 hours at 180$^\circ$C. Accelerated carbonation of the samples was carried out in a carbonation chamber with settings of 5% CO$_2$ by volume, 20$^\circ$C temperature and 60%RH for 28 days. After carbonation, each sample was completely submerged in acetone at 20$^\circ$C for 1 hour inside a vacuum containment, in order to terminate hydration. Afterwards, reduced pressure drying was carried out for 24 hours.
The test sample was cut in layers as follows: 0-2 mm as Surface layer; 4-6 mm as Middle layer and 8-10mm as Core layer. The mix proportions for the paste are shown in Table.2.1.

Table.2.1 Mix proportions for the paste specimens

<table>
<thead>
<tr>
<th></th>
<th>W (g)</th>
<th>C (g)</th>
<th>γ - C2S (g)</th>
<th>AD (g)</th>
<th>CA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>5.555</td>
<td>10</td>
<td>0-10</td>
<td>10</td>
<td>0.045</td>
</tr>
</tbody>
</table>

W… water
C… cement
AD… ground silica sand
CA… water-reducing admixture

2.1.2 Compression test
The specimen for compression test was made using the same mix proportion as shown in Table.2.1. The mixed paste was cast in cylindrical moulds, Ø5cm×10cm, autoclave cured and exposed to carbonation using the same settings explained in 2.1.1. Autoclaved compression tests specimens without carbonation were also prepared.

2.1.3 Dimensional stability test
Paste test specimens were prepared as explained in section 2.1.1. Gauge plugs were bonded on the samples using quick curing adhesive. An initial value of dimension was measured immediately after autoclave curing. The specimens were then stored in moist chamber for 22 hours at 20°C and were later tested of its dimension using a strain gauge at 70%RH for 24 hour at 20°C following the measuring standard set by JIS A1129-1.

2.2 Results & Discussions
2.2.1 Result of x-ray diffraction
Fig.2.2 shows the XRD peak intensity of crystalline tobermorite while Fig.2.3 shows the CaCO₃ peaks made from CO₂ acceleration of the 0% and 80% substituted specimens. (i) peak of tobermorite

(ii) peak of CaCO₃

In the case of 0% and 20% γ - C₃S substitution, the XRD peaks of crystalline tobermorite have completely disappeared at all layers from the exposed surface. This result may have been due to the complete carbonation of the specimen that lead to the destruction of the structure of the crystalline tobermorite that were formed during autoclave curing. On the other hand, In the case of 40% and 60% γ - C₃S substitution, the peak of crystalline Tobermorite remained in all layers. This means that the voids were filled up thus retarding the progress of carbonation. These voids were actually filled with Vaterite as evidenced by Figs.2.3 which shows high Vaterite peaks after carbonation. This was seen especially in the case of 80% γ - C₃S substitution where the crystalline tobermorite peak found in the core layer has the same intensity as that found in the non-carbonated case. Also, there are no carbonation products found in the core layer. From both these results, it is deduced that carbonation only reached the middle layer.

2.2.2 Result of compression test
In the non-carbonated case, the compression strength of the cylinder specimen decreased as the γ - C₃S replacement ratio was increased. When carbonation was induced for 28days, improvement was observed as the compressive strength increased in all levels of replacement ratios.

The 60% substitution turned out to have the highest improvement rate of compressive strength (45%) after carbonation. This was followed by 80%, then 40% substitution ratios. This maybe due to the of γ - C₃S generated vaterite³ from carbonation.

2.2.3 Result of dimension stability test
In all replacement ratios, the rate of length change for specimens that underwent autoclave curing was smaller by at least 50% than those specimens that underwent moist curing. It turns out that using autoclave curing can lead to the formation of tobermorite crystals that helped improved shrinkage deformation.
3. The change of pore distribution in carbonated cement paste with γ-C₃S

![Graph showing pore volume distribution](image)

Fig.3.1 0% Pore Volume

Fig.3.2 80% Pore Volume

In the case of 0% and 20% substitution ratio, carbonation deterioration occurred in all layers. After carbonation, the behavior of the threshold pore diameters shifted to the larger diameter. This result is in agreement with the results of the XRD test. On the other hand, in the case of 40% and 60% substitution, the behavior of the threshold pore diameters shifted to the small values of diameter. After autoclave curing, the remaining unreacted γ-C₃S was exposed to carbonation thus forming Vaterite that eventually filled the voids and prevented further penetration of CO₂. This was seen especially in the case of 80% substitution where there was no significant change in the threshold pore diameter behavior in the surface and middle layers although the amount of voids with size 0.03µm or less decreased. In the core layer, the voids and pore size distribution did not change at all before and after the exposure to carbonation. Thus, it can be deduced that the surface layer was extremely densified, leaving carbonation to reach only the middle layer, and preventing further progress of carbonation from reaching the core layer.

According to Dr. Saito³, there is a report that replacement of 80% ratio or more of γ-C₃S in 150°C cured specimens lead to lower deterioration factor. In this study, it was shown that using 40% or more replacement ratio of γ-C₃S in 180°C autoclaved cured and carbonated specimens can lead to the possibility of lowering the factor of deterioration.

4. The influence of the change of pore distribution on Cl⁻ diffusivity

![Graph showing Cl⁻ diffusion coefficient](image)

Fig.4.1 Cl⁻ diffusion Coefficient

In the case of 0% substitution, the Cl⁻ diffusivity is decreased in order of Surface, Middle, and Core layer. In contrast, the Cl⁻ diffusivity on 40% and 80% substitution ratios is increased in order of Surface, Middle, and Core layer. Looking at the results for the surface layer the specimen, the value with the smallest Cl⁻ diffusivity is 80% replacement ratio. Thus 80% replacement ratio has the lowest permeability to Cl⁻. Moreover, this result agrees to the result of the product change before and after undergoing carbonation, and also with the results of the voids structure.

In the surface layer of the specimen with replacement ratio of 0%, because of carbonation deterioration, the pore diameter becomes higher thus increasing the Cl⁻ diffusivity. On the other hand, in the case of 40% and 80% replacement ratio, the threshold pore diameter of the Surface layer becomes small due to the filling of voids thus the Cl⁻ diffusivity becomes lower.

In the Core layer of the specimens with replacement ratio of 80%, it is deduced that the Cl⁻ diffusion coefficient is increasing due to the presence of Tabemorite crystals, the formation of which is card shaped thus containing larger voids.

5. Comparing Cl⁻ diffusion coefficient of RC Pile and paste

5.1 Method of manufacturing the test specimen

Concrete piles embedded with steel bars were prepared following the mix proportions shown in Table 5.1.
After carbonation, as replacement ratio of 5.2 Results of test of chloride content in RC pile explained for cement paste. The specimens were then soaked in lower Cl- content decreased. Moreover, the results show that after carbonation, the specimen with 40% or more -C2S substitution, the Cl- diffusion decreased. It was thought that the material -C2S had demonstrated the effects of reducing the permeability to Cl at the replacement ratio 40% with carbonation and corresponds to the results observed previously for cement paste.

Table 5.1 mix proportion of concrete pile

<table>
<thead>
<tr>
<th>slump (cm)</th>
<th>Air (%)</th>
<th>W (C+AD) (%)</th>
<th>S/C (C+AD) (%)</th>
<th>AD/CA (C+AD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ± 3</td>
<td>2.0</td>
<td>32.9</td>
<td>50</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Amount of Unit (kg/m3)

<table>
<thead>
<tr>
<th>W</th>
<th>C</th>
<th>S</th>
<th>G</th>
<th>AD</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>385</td>
<td>905</td>
<td>905</td>
<td>65</td>
<td>5.63</td>
</tr>
</tbody>
</table>

Centrifugal conditions were used in the casting of the specimens. The specimens were then pre-cured in hot water (65°C). After pre-curing, the specimens were autoclaved followed by exposure to accelerated carbonation as that explained for cement paste. The specimens were then soaked in water bath for four months.

5.2 Results of test of chloride content in RC pile

Fig.5.2 shows the diffusion coefficient of Cl. In any replacement ratio, the Cl content in the pile exposed to carbonation has decreased. Moreover, the results show that after carbonation, the specimen with 40% or more γ-C2S show lower Cl diffusion. It was thought that the material γ-C2S had demonstrated the effects of reducing the permeability to Cl at the replacement ratio 40% with carbonation and corresponds to the results observed previously for cement paste.

Fig.5.3 shows the total amount of Cl- around the steel bar. After carbonation, as replacement ratio of γ-C2S was increased, the amount of Cl content decreased. The amount of Cl content of the specimens with replacement of 80% is about half that found for the specimens with 0% replacement.

6. Conclusions

(1) In cement paste with 0 to 20% γ-C2S substitution, carbonation proceeded throughout all layers and the tobermorite structure was destroyed. In cement paste with 40 to 60% γ-C2S substitution, the tobermorite structure was kept intact and the pore distribution was improved due to filling with Vaterite. In cement paste with 80% γ-C2S substitution, the surface layer was highly densified keeping the tobermorite and pore distributions of the core layer intact.

(2) Substitution of 0 to 20% γ-C2S to cement paste lead to the decrease in resistance against penetration of Cl ion. Substitution of 40 to 60% γ-C2S dramatically increased the density of the outer layers of the cement paste and improved its resistance against penetration of Cl. In the case of 80% substitution with γ-C2S, the penetrations of both CO₂ and Cl were prevented by the formation of very dense surface layer.

(3) Tests on the amount of chloride ions concentration in RC piles γ-C2S after 4 months exposure show the same trend of chloride penetration resistance as in cement pastes with γ-C2S.

In this study, the replacement of 80% γ-C2S showed the lowest permeability of Cl. The surface zone of the member has high densification and the inner portions contain crystalline tobermorite which has good dimensional and chemical stability.

Fig.5.4 High durability concrete pile

References

LIQUID-LIQUID EXTRACTION RATE OF COAL TAR ABSORPTION OIL
IN A CONTINUOUS COUNTERCURRENT SPRAY COLUMN

1. Introduction
Coal tar, one of the byproducts from coal carbonization, contains many useful compounds to chemical industry. Absorption oil (AO) which is one of the fractions of coal tar (b.p.=470~550K) contains nitrogen heterocyclic compounds (nitrogen compounds) such as quinoline (Q), isoquinoline (IQ), indole (IL), etc., homocyclic compounds such as naphthalene (N), 1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), biphenyl (BP), etc., and oxygen heterocyclic compounds such as dibenzofuran (DBF), etc. Generally, the separation and purification of these compounds in AO are carried out in two steps; 1: AO is separated into several fractions by reactive extraction with acid and/or base, 2: these fractions are separated and purified into respective products by distillation, crystallization, adsorption, etc. However, this process is relatively costly because the acid and base used as solvent are very difficult to be recovered and cause corrosion of the equipments. For this problem, the ordinary solvent extraction method with aqueous methanolic solution (MeOH aq.) and the liquid membrane method have been studied in many areas. For this problem, the ordinary solvent extraction method with aqueous methanolic solution (MeOH aq.) and the liquid membrane method have been studied in many areas.

2. Experimental
2.1. Apparatus
The schematic diagram of the apparatus is shown in Fig.1. Typical apparatus consists of the distributor, pump, solvent tank, solvent distributor, spray column, and other devices. The sprayer used here was the spray column, which was chosen for the equipment, because it was the simplest differential-contact device in laboratory studies, and mass transfer rate was measured and examined. Mass transfer occurs in three steps which are drop formation, drop coalescence and drop falling. The mass transfer from the single drop during its falling to the continuous phase has been studied. In the continuous countercurrent liquid-liquid extraction, a spray column was chosen for the equipment, because it was the simplest differential-contact device in laboratory studies, and mass transfer rate was measured and examined. In this study, a countercurrent spray column was applied to the extraction of AO and the separation performance was examined. The mass transfer coefficients were experimentally measured and compared with the previous correlations.

2.2. Procedure
AO and MeOH aq. were stocked in the tanks. AO, dispersed phase, was fed to the top of the column, MeOH aq., continuous phase, to the bottom and these two phases contacted countercurrently. The inlet flow rates were kept constant by controlling the flow valves and the level of the interface between the continuous phase and accumulated raffinate phase at the bottom was maintained by adjusting the drain valve of raffinate phase. The inlet and outlet flow rates were determined by weighing the mass collected in 10 minutes. The holdup of the dispersed phase in the column was determined by measuring the rise of the interface after about 1 hour.

Fig. 1 Schematic diagram of the experimental apparatus

Fig. 2 Details of distributors;
from closing AO inlet and drain at the same time. Each operation was carried out in 3 hours to reach steady state. Each phase was analyzed by GC-2010 (Shimadzu Corp.) The dispersed drop diameters were determined by taking photos of column and measuring the sizes of the drops. Table 1 shows the principle experimental conditions. The density and viscosity of each phase were measured with pycnometers and Ostwald viscometers.

<table>
<thead>
<tr>
<th>No.</th>
<th>feed: AO</th>
<th>solvent: MeOH aq.</th>
<th>(R_i) [kg·m⁻²·h⁻¹]</th>
<th>(J_{\text{MeOH}}) [-]</th>
<th>(E_b) [kg·m⁻²·h⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1</td>
<td>500~2500</td>
<td>0.73±0.03</td>
<td>1600±100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC2</td>
<td>500~2500</td>
<td>0.73±0.03</td>
<td>3200±100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Result and discussion

3.1. Composition of absorption oil

Table 2 shows the compositions of feed AO. The compositions of the feed AO changed every runs, because the raffinate phase in the previous run was recovered and used as feed in the next run. If necessary, fresh AO was added to the recovered raffinate phase. The ranges of compositions of nitrogen compounds were large, because the transferred amounts to continuous phase were high.

<table>
<thead>
<tr>
<th>component</th>
<th>mass fraction, (x_{i,\text{a}}) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinoline, Q</td>
<td>0.025~0.071</td>
</tr>
<tr>
<td>Isoquinoline, IQ</td>
<td>0.007~0.020</td>
</tr>
<tr>
<td>Indole, IL</td>
<td>0.017~0.036</td>
</tr>
<tr>
<td>Naphthalene, N</td>
<td>0.025~0.030</td>
</tr>
<tr>
<td>1-Methylnaphthalene, 1MN</td>
<td>0.093~0.103</td>
</tr>
<tr>
<td>2-Methylnaphthalene, 2MN</td>
<td>0.230~0.254</td>
</tr>
<tr>
<td>Biphenyl, BP</td>
<td>0.064~0.072</td>
</tr>
<tr>
<td>Dibenzofuran, DBF</td>
<td>0.105~0.125</td>
</tr>
<tr>
<td>Methanol, MeOH</td>
<td>0~0.012</td>
</tr>
</tbody>
</table>

3.2. Operability

3.2.1. Density and viscosity

Table 3 shows the densities and viscosities of the materials. The density of the dispersed phase was larger than that of the continuous phase. The viscosities of MeOH aq. and the extract phase were same.

<table>
<thead>
<tr>
<th>materials</th>
<th>density [kg·m⁻³]</th>
<th>viscosity [cP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption oil</td>
<td>1040~1100</td>
<td>-</td>
</tr>
<tr>
<td>Aqueous methanolic solution</td>
<td>870</td>
<td>1.533</td>
</tr>
<tr>
<td>Raffinate phase</td>
<td>1100</td>
<td>-</td>
</tr>
<tr>
<td>Extract phase</td>
<td>885~890</td>
<td>1.533</td>
</tr>
</tbody>
</table>

3.2.2. Behavior in the column

In all runs, entrainment of the dispersed phase drops into the continuous phase and flooding were not observed. The substantial mass transfers of these compounds could be detected with this bench scale column of which effective contact height was 0.495m. In the range of higher \(R_i \), the drops were falling down with zig-zag movement and the coalescence of the dispersed phase and axial mixing were observed.

Figure 3 shows the results of the holdup of dispersed phase in the column, \(H \). \(H \) increased with \(R_i \). Figure 4 shows the results of the drop diameter, \(d_{dp} \), \(d_{ds} \) decreased with an increase in \(R_i \). Specific interfacial area, \(a \), was calculated by,\n
\[
a = \frac{6H}{d_{ds}} \tag{3.1}
\]

Figure 5 shows the results of \(a \). \(a \) increased with \(R_i \) and decreased slightly with an increase \(E_b \).

3.3. Separability

3.3.1. Composition of extract phase

Figure 6 shows the result of compositions in the extract phase, \(y_{i,\text{ex}} \). \(y_{i,\text{ex}} \) of nitrogen compounds were higher than those of other compounds. In the range of \(R_i < 1500 \), \(y_{i,\text{ex}} \) of nitrogen compounds increased with \(R_i \), and in the range of \(R_i > 1500 \), the changes of \(y_{i,\text{ex}} \) were small. This was because \(y_{i,\text{ex}} \) of nitrogen compounds reached equilibrium compositions in the range of \(R_i < 1500 \). \(y_{i,\text{ex}} \) of other compounds were almost constant against \(R_i \) because those reached equilibrium compositions.

3.3.2. Yield

Yield of component \(i \), \(Y_i \), was defined as

\[
Y_i = \frac{y_{i,\text{ex}}}{y_{i,\text{f}}} (R_i \cdot y_{i,\text{f}}) \tag{3.2}
\]

Figure 7 shows the results of \(Y_i \). \(Y_i \) decreased with an increase in \(R_i \). \(y_{i,\text{ex}} \) increased with \(R_i \) and \(y_{i,\text{ex}} \) almost approached \(y_{i,\text{f}} \). However, \(R_i \) became bigger than the
increase of the transferred amount of these components.

\[Y_i \] slightly increased with \(E_b \). The maximum \(Y_i \) values of nitrogen compounds and other compounds were 0.5 and 0.1.

3.3.3. Separation selectivity

The separation selectivity of component \(i \) relative to 2MN, \(\beta_{i2MN} \), was defined as

\[\beta_{i2MN} = \left(\frac{Y_i}{\overline{Y_i}} \right)_{2MN} \]

(3.3)

Figure 8 shows the results of \(\beta_{i2MN} \). \(\beta_{i2MN} \) did not change so much as \(R \) changed. \(\beta_{i2MN} \) of nitrogen compounds and other compounds were around 15 and 1. This was because the difference between the distribution coefficients of nitrogen compounds and other compounds was about 10 times. Therefore, the distribution coefficients affected \(\beta_{i2MN} \).

3.4. Mass transfer rate

3.4.1. Overall mass transfer coefficient

The overall mass transfer coefficient based on the continuous phase concentration, \(K_{e,c} \), was calculated by:

\[\frac{d(E \cdot y_i)}{dz} = -K_{e,c} \cdot \alpha \cdot (y_i - \overline{y_i}) \]

(3.4)

The equilibrium composition, \(y_i^{*} \), was calculated by:

\[y_i^{*} = \frac{m_i^{*}}{\sum m_i^{*}} \]

(3.5)

where \(m_i^{*} \) was the distribution coefficient and the value estimated in previous study was used. Figure 9 shows the results of \(K_{e,c} \). In the range of \(R_c \leq 1500 \), \(K_{e,c} \) did not change so much, and in the range of \(R_c > 1500 \), \(K_{c,j} \) decreased with an increase \(R \). This was because the axial mixing of the dispersed phase in the column was occurred. \(K_{e,c} \) also increased with \(E_b \). \(K_{e,c} \) of nitrogen compounds was smaller than that of other compounds.

3.4.2. Correlation of mass transfer coefficient

In previous work, the mass transfer within continuous phase was more dominant than within the dispersed phase in the overall mass transfer. The mass transfer coefficient in the continuous phase, \(k_{c,j} \), was, thus, assumed to be equal to \(K_{c,j} \) and compared with the previous correlations. Thorsen and Terjesen have correlated the continuous phase mass transfer coefficients from the single drop to the continuous phase by using \(N_{Re} \), \(N_{Sc} \) and \(N_{Sh} \) as:

\[N_{Sh} = 178 + 3.62 \cdot N_{Re}^{1/3} \cdot N_{Sc}^{1/3} \]

This equation was applied to the mass transfer by the internal circulation of the drop. They confirmed the rigid drop by the addition of surfactants. Garner and Suckling used solid spheres as dispersed phase drops and obtained the correlation below:

\[N_{Sh} = 2 \cdot 9.5 \cdot N_{Re}^{1/3} \cdot N_{Sc}^{1/3} \]

This was applied to the mass transfer of rigid sphere drop.

Here, \(N_{Re}, N_{Sc} \) and \(N_{Sh} \) are expressed as follows:

\[N_{Re} = \frac{\rho \cdot u \cdot D_j}{\mu} \]

(3.6)

\[N_{Sc} = \frac{\mu \cdot D_j}{\rho} \]

(3.7)

\[N_{Sh} = k_{l,c} \cdot D_j \]

(3.8)

\(u \) is slip velocity in the column and obtained from below equations.
The diffusivities of component i were determined by using Wilke-Chang equation.

$$D_i = 7.4 \times 10^{-8} (BM_i)^{1/2} T_i^{0.6}$$ \hspace{1cm} (3.12)

N_{Sh} is plotted versus N_{Re} in Fig.10. In this study, N_{Sh} increased with increasing N_{Re}, favorably carrying out the separation system of AO. The results in this study were closer to the correlation by Thorsen and Terjesen than to that by Garner and Suckling. So, it was confirmed that in this separation system of AO the mass transfer occurred by the internal circulation of the dispersed drops. N_{Sh} of nitrogen compounds was below the two lines. Meanwhile, N_{Sh} of other compounds were above the line of Thorsen and Terjesen. In this work, this system was of multi-components and this should make the mass transfer process more complicated. In this case, it was assumed for the mass transfer to be controlled by the continuous phase and this assumption might not be able to fully explain this situation, causing the N_{Sh} trend.

5. Conclusion

The separation of AO with continuous countercurrent spray column was favorably carried out. The yields, Y_e and selectivity, β_{2MN}, were about 0.5 and 20 at maximum, respectively. It was confirmed that nitrogen compounds could be selectively separated.

The overall volumetric mass transfer coefficient based on the continuous phase concentration, K_{ga}, increased with R_c. The correlation of the continuous phase mass transfer coefficients approximately corresponded to the equation obtained by Thorsen and Terjesen. The disagreement of the mass transfer coefficient correlation of nitrogen compounds was due to the difference of the range of N_{Sh}.

Acknowledgment

AO was provided by JFE Chemical Corporation.

Nomenclatures

- a : specific interfacial area [m2·m$^{-3}$]
- B : associated factor of solvent [-]
- D : diffusivity [m2·h$^{-1}$]
- E : superficial mass flow rate of continuous phase [kg·m$^{-2}$·h$^{-1}$]
- H : holdup of dispersed phase [-]
- K_c : overall mass transfer coefficient based on continuous phase concentration [kg·m$^{-3}$·h$^{-1}$]
- m_i : distribution coefficient of component [-]
- M : molecular weight [kg·mol$^{-1}$]
- N_{Re} : Reynolds number [-]
- N_{Sc} : Schmidt number [-]
- N_{Sh} : Sherwood number [-]
- R : superficial mass flow rate of dispersed phase [kg·m$^{-2}$·h$^{-1}$]
- T : temperature [K]
- u : velocity of fluids [m·h$^{-1}$]
- v : molecular volume at standard boiling point [m3·mol$^{-1}$]
- x : mass fraction in oil phase [-]
- y : mass fraction in aqueous phase [-]
- y^* : equilibrium mass fraction in aqueous phase [-]
- Y : yield [-]
- z : distance from top of the column [m]

β_{2MN}: separation selectivity of component i relative to 2MN [-]

ρ : density [kg·m$^{-3}$]

μ : viscosity [cP]

$<\text{Subscripts}>$

- i : at equilibrium
- 1 : 1-methylnaphthalene
- 2 : 2-methylnaphthalene
- b : at bottom of the column
- BP : biphenyl
- DBF : dibenzofuran
- IL : indole
- IQ : isoquinoline
- i : component i
- $MeOH$: methanol
- N : naphthalene
- Q : quinoline
- t : at top of the column

Reference

EXTRACTION OF TEXT AREA USING SCALE INVARIANT FEATURE TRANSFORM

Student Number:07M18125 Name:Jo Matsuda Supervisor: Yukihiro Yamasita

EXTRACTION OF TEXT AREA USING SCALE INVARIANT FEATURE TRANSFORM

1 INTRODUCTION

Recently, the digital camera and the digital video recorder are miniaturized and have very high resolution. Such features are progressing rapidly and many functions are added to them. The digital camera can be used to acquire character information from the environment.

The digital camera and the cellular phone are very attractive as instruments for the character recognition and the document analysis. Different from the two-dimensional environment for a scanner, the three-dimensional environment for such instruments has many difficulties such as background, deformation, lighting and so forth.

To solve such problems, we propose a new character area extraction method using Scale-Invariant Feature Transform algorithm[1][2] in this research.

2 OVERVIEW OF TEXT ANALYSIS

Recently, the accuracy of optical character recognition has reached high level. Usually in optical character recognition, the image of document is taken by the scanner, and it is converted into the form that we can edit in the computer. The recognition of the Latin typed document is practical. However, the technology that extracts the character from the scene image with a digital camera and a portable camera is still incomplete.

3 OVERVIEW OF SIFT

Scale-Invariant Feature Transform (SIFT) is a method for detecting and extracting local feature descriptors that are reasonably invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint. We will explain the algorithm of SIFT.

3.1 Algorithm of SIFT

The processing of SIFT consists of two stages. That is, the detection of the key point and the description of the feature. SIFT is done by the following flows.

1) Detection of scale and key point.
2) Localization of key point.
3) Calculation of orientation.
4) Description of features.

In 1), the scale and the key point candidates are detected by the DoG (Different of Gaussian) processing. In 2), from the candidates, the key point are chosen by it's main curvature. Next, the sub-pixel-position is specified. In 3), for the calculation of the orientation, the histogram is generated from gradient information on the key point. The orientation is calculated from the histogram. The invariance of rotation is obtained by this operation. In 4), the area for describing features is rotated in the direction of the orientation previously determined. Afterwards, the the features are calculated by using gradients within the rotated area. The feature vector is normalized at the end. Because of normalization, the influence of light and shade are eliminated.
4 Proposed technique

4.1 Overview

The proposed technique aims at the text extraction that is robust to rotation, scale, and lighting changes. A flow of the process is described as follows.

1) The feature vector is described with the detection of the key point by SIFT. 2) The key points in the learning data and input data are matched. 3) Matched points are selected from them by using their position. 4) The area where the density of matched points is high is extracted. 5) The extracted area is binarized. Afterwards, a final text area is extracted.

4.2 Feature vector

The feature vector for input and learning images are extracted by SIFT.

4.3 Matching

The matching is done by comparing the feature vectors. The pair of feature vectors of which distance is the smallest is extracted as matched points. The distance is evaluated by the following expressions.

\[d(u^{k_{1}}, u^{k_{2}}) = \sqrt{\sum_{i=1}^{128} (u_{i}^{k_{1}} - u_{i}^{k_{2}})^2} \] \hspace{1cm} (1)

\[d_1 < w d_2 \] \hspace{1cm} (2)

\[d_1 : \text{The distance of the nearest point} \]
\[d_2 : \text{The distance of the second nearest point} \]
\[w : \text{threshold} \]

4.4 Selection match point

According to the difference of fonts, the matching condition is loosely set. Therefore, the matched points exist except in the text area. Then, we select matched points by the parallel relation and their density. In order to reduce the number of matched points, we select a matched point that has other matched points in its neighbor such that the segment between the two key points of the matched point is parallel to those of matched points. Then, isolated matched points are discarded. By using Gaussian filter a high density region of matching points are extracted.

4.5 Binarization

The area is separated by overlapping blocks. The blocks in which the integral of the filtered density of matching points calculated on section 4.4 excess the threshold is labeled as a character region.

5 Experimental Results

5.1 Experiment using various type of image

The experiment is conducted by using the various images. The types of images used in this experiments are scene images, web image and poster image. We used five images for each experiments. And the representative results are shown as following figures.

*The area around red line is extracted area

Figure 3: scene image

In Figure 3, it includes natural background information. In Figure 4, it includes the information of web object. In Figure 5, it is conducted to check
the resistance for the poster image. From the experiments result, we can say the proposed system extracts target text area in many case (scene image=4/5 web image=3/5 poster image=4/5). And, the proposed system extract target area completely in their experiments.

However, the proposed system was not able to detect precisely when the font size is too small, proximity background is complex, the target image has lots, and the target text uses special font. For example, the font size is too small in the Figure 4. Then, the non-target text area is included.

5.2 Experiment using added change image

In the following experiment, changes are added to the original images. The changes used in this experiment are symmetric transformation, rotation, reduction and expansion, lighting, and projective transformation.

In Figure 6 and 7, the robustness for symmetric transformation is examined. In Figure 8, the robustness for rotation is examined. In Figure 9, the robustness for projective transformation is examined. In Figures 10 and 11, the robustness for scaling is examined. In Figures 12 and 13, the robustness for lighting change is checked.

From the results, the proposed system shows robustness in many case (Figure 6, Figure 7, Figure 8, Figure 10, Figure 12, Figure 13). For the reduction
(Figure 11), it does not extract completely. Because the target font size in reduced image is too small. But target areas are extracted more than 70 percent. However, for the projective transform (Figure 9), it does not extract precisely, when the text includes characters that are symmetric to each other.

6 Conclusions

We proposed a new character area extraction method that uses SIFT. We show its robustness for image transformation, and lighting change.

For future tasks, we have to develop a method that has a robustness against projective transformation.

REFERENCES

1 Introduction

Recently, various environmental problems in urban cities, such as heat island and concentrated heavy rain, were observed. Urbanization significantly impact the transport processes of momentum, water vapor and heat. Various studies reveal that these processes are dominated by turbulent coherent structures (Inagaki and Kanda [1]). For a flat surface, Adrian et al. [2] indicated the schematic diagram of the coherent structures using PIV (particle image velocimetry) measurements. In addition, these structures were also observed over vegetation canopies (Finnigan [3]). Nevertheless, there is a dearth of research quantifying coherent structures due to the difficulty of establishing relations between spatial and temporal aspects of such structures. In the present study, I investigated these relationships by evaluating the spatial and temporal scales of these structures, and comparing with other studies. Furthermore, we evaluated the convective velocity over the reduced urban model. The convection velocity U_c is instrumental in Taylor’s hypothesis, which converts temporal data to spatial data. This hypothesis is the time-history of the flow signal measured from a stationary probe, and regards the convection flow as a ‘frozen’ spatial pattern of turbulence past the probe. The mean wind velocity \overline{U} is approximated by the value of U_c in Taylor’s hypothesis. Yet, various studies suggested the Taylor’s hypothesis does not work on various surface conditions. Shaw et al. [4] found that U_c/\overline{U} = 1.2 at a height of 2 times the vegetation canopy by using correlation analysis, while Castro et al. [5] yielded U_c/\overline{U} = 1.3 at the canopy height using wind tunnel experiment with a staggered pattern of cubes.

2 Experimental methods

2.1 COSMO

The experiments were conducted at the COSMO (Comprehensive Outdoor Scale Model), Nippon Institute of Technology, which was constructed for urban climate studies. The floor area is 50m by 100m, covered with concrete cubes of 1.5-m dimension (H) to represent urban type roughness, arranged in a symmetrical and aligned pattern with an area coverage density of 25% (Fig.1).

2.2 Installation of the instruments

Figure 1 shows the installation positions of instruments for the 3 cases. For case 1, 15 anemometers were located at each spanwise-line through C1 and C2. For case 2, 4 sonic anemometers were located at S3, S4, S5, and S6, along with 7 other probes arranged in a spanwise-line.
aligned to S6. Case 3 is similar to case 2, except that probes at S1 and S2 replace those at S4 and S5, respectively. The spatial intervals of each probe \(dx \) are shown in Table 1. For simplification, I substituted symbols for each \(dx \). All anemometers were located at 2H (H: canopy height). Sampling frequency is 10Hz for case 1, and 50Hz for cases 2 and 3.

Table 1: Spatial intervals of each probe

<table>
<thead>
<tr>
<th>symbol</th>
<th>(dx) (m)</th>
<th>instrument number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6</td>
<td>5.6</td>
<td>S5, S4</td>
</tr>
<tr>
<td>D9</td>
<td>8.85</td>
<td>S8, S5</td>
</tr>
<tr>
<td>D14</td>
<td>14.45</td>
<td>S6, S4</td>
</tr>
<tr>
<td>D22</td>
<td>21.55</td>
<td>S4, S3</td>
</tr>
<tr>
<td>D27</td>
<td>27.15</td>
<td>S5, S3</td>
</tr>
<tr>
<td>D36</td>
<td>36.0</td>
<td>S6, S3</td>
</tr>
<tr>
<td>D50</td>
<td>50.35</td>
<td>S6, S2</td>
</tr>
<tr>
<td>D66</td>
<td>65.85</td>
<td>S6, S1</td>
</tr>
<tr>
<td>D84</td>
<td>84.0</td>
<td>C1, C2</td>
</tr>
</tbody>
</table>

3 Analytical Procedures

3.1 Definition of space-time correlations

Two-point correlation coefficients were calculated as follows,

\[
R_{uv} = \frac{\overline{u(r,t)u(r+dr,t+dt)}}{\sqrt{\overline{u^2(r,t)}} \sqrt{\overline{u^2(r+dr,t+dt)}}}
\]

(1)

where \(r \) represents the position with spatial coordinates \((x,y,z)\), \(t \) is time, \(dr \) is the distance between 2 points, \(dt \) is the time lag. \(R_{uu}, R_{vv}, \) and \(R_{uw} \) are calculated from velocity fluctuation components for the streamwise, spanwise and vertical directions \((u', v', w') \).

3.2 Computation approach

The convection velocity is calculated using the equation:

\[
U_c = \frac{dx}{\tau}
\]

(2)

where \(\tau \) is the time delay required to maximize the space-time correlation. Specifically for D84 (case 1), decomposition of inner- and outer-scales described by Inagaki and Kanda [1] was used, with the following equation:

\[
u = \left[u \right] + \overline{u'} + u'^\prime
\]

(3)

where the square brackets represent spatial averaging, the over-bar symbolizes temporal averaging, the prime represents spatial fluctuation, and the double prime indicates the temporal and spatial fluctuation component. That is to say, the outer-scale motion is evaluated from \(\left[u \right] \), and the inner-scale motion is evaluated from \(u'^\prime \).

3.3 Filtering condition

I set thresholds for turbulent intensity (<0.5), wind direction \((\pm 10\degree) \) and stability (neutral) exclusively for the S6 probe. Furthermore, mean velocity increment of 0.5 \((m\cdot s^{-1})\) from 0.5 \((m\cdot s^{-1})\) was selected. Additional threshold values for all probes were set as follows: mean temperature \((0 < T < 50)\), momentum \((u'w' < 0)\), and angle of elevation \((\pm 15\degree)\). Number of samples per threshold velocity range are shown in Table 2.

4 Results

4.1 Convection velocity for 30-min averaging time

Figure 2 shows a comparison of \(U_c \) computed from two-point correlations (Equation (2)) and the local mean streamwise wind velocity calculated from \(u' \).

The scattered plots indicate that the \(U_c \) exceed the mean wind velocity. When the distances between instruments are relatively close (D6 to D14), the corresponding plots are closer to the 1:1 gradient-line with respect to the other plots. The plots for D84 are linear and exceed the 1:1 gradient-line, indicating that the outer-scale eddies significantly exceed the mean wind speed. Furthermore, the plots corresponding to large \(dx \) (>22 m) gather near the 1:1.6 approximation line. This suggests that the \(U_c \) of inner- and outer-scale eddies can be distinguished by the spatial interval size. It can be deduced that small interval-sized plots (D6 to D14) represent inner-scale \(U_c \) because it seems that the

Table 2: Number of samples per threshold velocity range

<table>
<thead>
<tr>
<th>threshold velocity (m/s)</th>
<th>case1</th>
<th>case2</th>
<th>case3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neutral</td>
<td>neutral</td>
<td>neutral</td>
</tr>
<tr>
<td>0.5–1.0</td>
<td>3</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>1.0–1.5</td>
<td>4</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>1.5–2.0</td>
<td>9</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>2.0–2.5</td>
<td>3</td>
<td>7</td>
<td>43</td>
</tr>
<tr>
<td>2.5–3.0</td>
<td>3</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>3.0–3.5</td>
<td>4</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>3.5–4.0</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.0–4.5</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.5–5.0</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.0–5.5</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.5–6.0</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.0–6.5</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
edds involved retain their shape in the streamwise direction. On the other hand, larger interval-sized plots (D27 to D84) appear to capture outer-scale U_c, wherein the corresponding inner-scale eddies do not retain their shape due to their shorter life-time. Therefore, the correlation of outer-scale motion becomes stronger than of inner-scale motion.

4.2 Convection velocity for 3-min averaging time

To clearly distinguish the inner- and outer-scale eddies associated with U_c, I reduced the averaging time from 30 minutes to 3 minutes. The reduced averaging time allows us to focus on the inner-scale motion, which has smaller time scale than the outer scale motion, by eliminating large-scale motions which are included in the mean component of this shorter time average.

Figure 3 shows the result of this 3-minute averaging calculated from u'. The difference in U_c previously observed in Figure 2 is more obvious since there is now less scatter around the corresponding approximation lines. The 3-minute plots of D6 to D14 are closer to 1:1 line, while the 3-minute plots of D27 and D36 vary less than the 30-minute plots. This verifies that the smaller averaging time eliminates the influence of eddies with frequencies greater than 3 minutes. Nevertheless, the influence of outer-scale motion is still apparent for large interval plots.

4.3 Comparison with other studies

The U_c from the previous plots are shown in Table 3. These are approximated from the gradient of approximation lines using the 3-minute plots of D6 to D14 for the inner-scale, and the 30-minute plot of D84 for the outer-scale, respectively. These U_c’s are faster than the mean wind velocity, especially for the outer-scale motion. Considering inner-scale fluctuation and outer-scale fluctuation are independent and have no interaction with each other [6], and the structure attributed to the inner-scale eddies [7], it was considered the structure above COSMO is transported by the inner-scale convection velocity.

This inner-scale U_c agrees with other studies, such that over vegetation ($U_c/\bar{U} = 1.2$: Shaw et al. [4], $U_c/\bar{U} = 1.3$: Su et al. [8])) and rough surfaces ($U_c/\bar{U} = 1.3$, Castro et al. [5]). These indicate that the convective velocities of the inner-scale motions are similar over vegetation and COSMO.

4.2 Horizontal distribution of correlations at 2H

Figure 4 shows a comparison of horizontal distribution computed from two-point correlations of (u', v'). The horizontal axis is the converted time scale to length scale using mean wind velocity and normalized by H. ‘TD’ represents the outer-scale motion, and ‘SD’ represents the temporal and spatial fluctuation in Equation (3). It can be observed from Fig.4(a)-(b) that the influence of
the outer-scale motion is elongated in the streamwise direction. The shape of R_{uv} distribution is more rounded since the coherent structure is meandering. Outer-scale motion does not affect w' fluctuation (not shown).

4.3 Quantification and Comparison

From Fig.4(c), the length in streamwise direction is $11.0H$ using $Uc/U = 1.3$. Calculating the spatial and temporal scales of the coherent turbulence from SD, the horizontal to vertical ratio is $9:2$. Using $Uc/U = 1.3$, the ratio becomes $11:2$. This is shown that the convection velocity is important parameter for quantification. Furthermore, this result is in agreement with the findings of LES over rough surface of Zhang [9] (2H), wind tunnel over vegetation of Shaw et al. [4] (H) and wind tunnel over flat surface of Ganapathisubramani et al. [10]. These results suggest that the structure of inner-scale motion is geometrically similar regardless of surface condition.

5 Conclusions

The conclusions of this study were summarized as follows:
1. The inner-scale convection velocity is 1.3 times faster than the mean wind velocity at 2H, and that of outer-scale is 1.6 times faster at COSMO.
2. At COSMO, the horizontal to vertical ratio of the streamwise structure is $11:2$. The ratio is in good agreement with studies for vegetation canopy and LES of rough and flat surface.

These results indicate the coherent structures of inner-scale motions are similarity irrespective of the surface conditions.

References

System to Make Teaching Materials Based on Collective Intelligence

Student Number: 07M18148 Name: Mandana AMIR KHOSRAVI Supervisor: Yukihiro YAMASHITA

1 Introduction

After 1990, due to the innovations of Information Technology, utilization of equipments like PC has become widespread among general households. Then nowadays, according to development of the Internet and WWW, we can exchange information regardless of time and place. And utilization of e-Learning system gives a chance to learners to use PC for learning anytime and anywhere. But the problem is that to make teaching materials for e-Learning, not only teaching methodology skill but also IT skill are necessary, and correction and changing of materials are difficult. Therefor making materials costs much. Furthermore, using Wiki systems gives an opportunity to people around the world to exchange their information. And according to Wiki philosophy, applying Wiki does not need any especial skill, and making materials in a group is possible. However, Wikis are static pages, thus Wikis cannot be an effective learning/studying system.

Then in this research, we proposed a new system, combined the tobe (Text Oriented Bi-Stream Explanation) system and Wiki system. The tobe system is an text-base learning system that makes animation from tobe text. The tobe text has to be written in tobeML (XML based markup language). Then, its combination with Wiki enables to create a tobe text easily in a group via a network.

2 e-Learning

Electronic Learning (or e-Learning)[1] is a type of technology supported education/learning, where the medium of instruction is computer technology, particularly involving digital technologies. e-Learning has been defined as "pedagogy empowered by digital technology". e-Learning is used interchangeably in a wide variety of contexts. In companies, it refers to the strategies that use the company network to deliver training courses to employees. Lately in some universities, e-Learning is used to define a specific mode to attend a course or programs of study where the students rarely attend face-to-face for on-campus access to educational facilities. Table 1 shows the e-Learning history.

3 tobe system

The tobe system[2] is a system to change the text-based data to animation. In the tobe system, the player that does this conversion is called "Expositor". In this system all the data are written in text-based, therefore the correction and changing data are easy. And Expositor makes a situation similar to real classroom on the PC screen. Expositor just can read the text which is written in the tobeML language. The tobeML is a markup language based on XML which is defined originally for this system.

When a learner plays the Expositor, Fig.1 ap-
Table 1: e-Learning history

<table>
<thead>
<tr>
<th>Generation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>CBT (Computer Based Training): Have to install materials directly to the PC or use CDs, learners can study in any where and at any time, but the problem is information exchanging is just one-way.</td>
</tr>
<tr>
<td>second</td>
<td>WBT (Web Based Training): Using web browser, and using network makes a possibility to have two-way learning.</td>
</tr>
<tr>
<td>third</td>
<td>LMS (Learning Management System): In addition to WBT functions, we can manage the records and check the learners’ progress.</td>
</tr>
</tbody>
</table>

appears on the screen. As you can see in Fig.1 the tobe system includes three main parts, board, professor with pointer and talk part (the part that professor explains by voice).

![Fig. 1: tobe system](image)

However making materials in tobeML language is not easy and the data creator has to memorize tobeML tags. To solve this problem, in this research we proposed the tobeWiki system.

4 Collective Intelligence

Collective intelligence (CI) [3] is a shared or group intelligence that emerges from the collaboration and competition of many individuals. CI can also be defined as a form of networking enabled by the rise of communications technology, namely the Internet. Web 2.0 has enabled interactivity and thus, users are able to generate their own content. Collective Intelligence draws on this to enhance the social pool of existing knowledge. Communications tools enable humans to interact and to share and collaborate with both ease and speed. With the development of the Internet and its widespread use, the opportunity to contribute to community-based knowledge forums, such as Wiki systems become possible.

4.1 Wiki

Wiki [4] is a Hawaiian word for "fast". "Wiki Wiki" is a reduplication. A wiki is a page or collection of Web pages designed to enable anyone who accesses it to contribute or modify content, using a simplified markup language. Wikis are often used to create collaborative websites and to power community websites. The collaborative encyclopedia Wikipedia is one of the best-known wikis. Wikis are used in business to provide networks and knowledge management systems. Ward Cunningham, the developer of the first wiki software, WikiWeb, originally described it as "the simplest online database that could possibly work".

Wiki is a piece of server software that allows users to freely create and edit Web page content using any Web browser. And Wikis have a simple text syntax for creating new pages.

![Fig. 2: Wiki and general web page](image)

And the main characteristics of Wiki are:

- Wiki invites all users to edit any page or to create new pages within the wiki Web site.
Wiki promotes meaningful topic associations between different pages by making page link creation almost intuitively easy and showing whether an intended target page exists or not.

Ordinarily, the structure and formatting of wiki pages are specified with a simplified markup language, sometimes known as "wiki-text". For example, starting a line of text with an asterisk ("*") is often used to enter it in a bulleted list.

5 Proposed system

The proposed system, the tobeWiki system, is the combination of the tobe system and the Wiki system. In this system we define the formatting rules for tobeWiki to make teaching materials easily in a group. And after making materials as a text on Wiki, the text-base data will be changed to the tobe text and tobeML tags will be added to the Wiki text automatically to be readable in Expositor. Fig.3 illustrates the tobeWiki system. To define wiki formatting rules, we used simple symbols. The defined formatting rules on tobeWiki are as below.

- To make the header part: we put the title, author, panel size and professor character information in the bracket and divide up them by "/".

\[\text{[title/author name/panel size/professor character]}\]

- To make the board part (the part which is going to appear on the board): in this part, on the Wiki pages we use simple symbols to make text-base data which are going to appear on the board. The symbols are listed in Table 2.

- To make the talk part (the part that professor is going to explain by voice): in this part, on the Wiki pages we use simple symbols to make text-base data which are going to change to audio. The symbols are listed in Table 3.

![Fig. 3: tobeWiki system](image-url)
The advantages of this system for a creator are:
- Creator does not need to use videos for making materials, just have to download Wiki on the PC.
- Creator does not need to memorize tobeML tags, just have to memorize Wiki symbols.
- Creator does not need to have any special IT skills.
- Because the created data are text-base, correction and changing are easy.
- Making Materials in a group is possible.

The advantages of this system for a learner are:
- Because of the created data are text-base, learner does not need to care about amount of data and environment.
- Learner can choose the necessary data by checking tobeML tags. tags.

And finally, (header)+(board part)+(talk part) form a tobe text, and Expositor converts the tobe text to animation.

6 Conclusion

In this research we developed a system to improve the learning through the Internet and making teaching material easier in a group. According to this system, first we make data on Wiki pages, and as a next step these data will be changed to tobe texts. And finally convert these data to animation.

However, still the system need to be improved, and as a future work we have to improve it graphically. And now the tobeWiki system works only in English, but it should correspond to other languages, too. And we also need to define more formatting rules for Wiki to have easier way for making tobe texts.

References

The property of dislocation motion tracks which formed in
deformation of aluminum and influence on the dislocation

Student Number: 07M18154 Name: Chao Hu Supervisor: Kunio Takahashi

1 Introduction

In the recent studies by Kiritani et al1–6, many experimental
results which imply the existence of deformation mechanism
without dislocation were reported. In this deformation, they
observed few dislocations at the fractured tip of thin
metal foil at which heavy deformation occurred. Instead, they observed an anomalous number of point
defect clusters. They proposed the existence of a
plastic deformation mechanism that proceeds without
dislocation. Kiritani et al1,7,8 proposed the new deformation
mechanism but the detail of the deformation is still unknown.
To interpret the phenomenon discovered by Kiritani et al,
motion of the dislocations has been observed by
electron microscopy.

Plastic deformation in metals occurs by the gliding
of line-type crystal lattice defects called dislocations.
The theory of the strength of metals is based on
interactions between these dislocations and various
kinds of crystal lattice defects, including the
dislocations themselves, all of which act as barriers to
the gliding motion of the dislocations. In this study,
we show the slip traces of dislocations formed
inside of the aluminum foil which has been discovered
in aluminum by electron microscopy. It exists only
under elastic strain and disappears completely when
the stress is unloaded.

2 Experimental Method

2-1 Specimen

The tensile deformation process of pure aluminum
was observed by an electron microscope. The
specimen used was pure aluminum with 99.999% purity. It is considered that few impurities in
aluminum influence on the experiment, but the
influence is still unknown. Specimen was cold rolled
to a thickness of 50µm, annealed at 873 K, and then
cut into pieces of size 2mm×10mm in order to
accommodate it in a tensile specimen holder(Fig. 1).
A notch cut where is the arrow was introduced in the
center of the piece in order to render the rupture of the
specimen to begin at the center. In order to remove the
dislocations, we annealed the specimen at 773 K an

Fig. 1 Specimen in tensile specimen holder

hour.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>298K</th>
<th>323K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Samples</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

2-2 In-situ tensile experiment

The in situ observation of tensile fractures was performed using a JEOL 2010 electron microscope, specimen observed with electron microscope at the acceleration voltage of 120keV. Crosshead speed of the straining holder was controlled to 0.1 µm/s. Specimen temperature was 298K and 323K. The direction of the observation is from <100> direction, and g=200 reflection beam was selected. Dark field observation for TEM image was recorded by a video recorder.

By pulling the specimen, cleavage proceeds from the notch cut. Dislocation motion tracks in aluminum has been observed by stop pulling the specimen just before the foil ruptures. And the tracks disappear when the tensile stress is unloaded.

3 Experimental Results

3-1 Appearance of dislocations and their motion tracks in aluminum

Figure 2 shows dislocation motion tracks images observed by transmission electron microscope (TEM) in aluminum foil. (a) Initial state before the appearance of new dislocations. (b) Dislocations have appeared from the directions of the arrows and stopped. The contrasts of the tracks are yet very faint at this stage. (c) The contrasts of the tracks have gradually become stronger. (d) The contrasts of the tracks have become clear. These dislocation motion tracks Fig. 3 were known type of planar defects (stacking fault) in a difference direction observation. Fig. 4 shows a schematic description of the dislocation motion track, the track consists of “surface track” and “internal track”.

3-2 Disappearance of dislocation motion tracks

Figure 5 shows variation of the image contrasts of the dislocation motion tracks with time at room temperature when the stress is unloaded. The images have gradually become faint after 12 seconds, they
have almost disappeared. Fig. 6 shows A, B and C field brightness change with time is dislocation motion track field, A is no specimen field and B is no dislocation motion track field in specimen. It is considered the dislocation motion tracks is not steady, they disappears completely when the stress is unloaded.

3-3 Difference of dislocation motion tracks disappears between room temperature and 323 K

Figure 7 shows variation of the image contrasts of the dislocation motion tracks with time at 323K when the stress is unloaded. In Fig. 5 after 12 seconds, the dislocation motion tracks images have gradually become faint, dislocation motion tracks variation of 323K is much slower than the variation at room temperature.

3-4 Interaction between dislocation and motion track

Figure 8 shows a very interesting sequence of the interaction between dislocations and dislocation motion tracks. Fig. 8(a) is the initial state. Then in Fig. 8(b), a dislocation appeared and stopped at P. Simultaneously, Q became bright. The bright part is considered to be an intersection line between two different dislocation motion tracks. In Fig 8(c), P advanced again and stopped at barrier Q. In Fig. 8(d), P advanced upward and disappeared. When P broke through the barrier Q, the bright line image at Q rotated clockwise. It is obvious that the remote interaction between P and Q in Fig. 8(b), at Q, push out of atomic arrays toward the direction of the arrow is observed. It is surprising that the shift of atoms is taking place by the touch of far dislocations that exists at the distance of several hundreds nm. This role of dislocation motion tracks as a conductor of the stress
is extremely important when considering the mechanical properties of polycrystalline metals.

4 Discussions

4-1 Causation of dislocation motion tracks formed in aluminum

From the observed results of dislocation motion tracks images, the contrasts of the tracks was formed by motion dislocation, these dislocation motion tracks Fig.4 were known type of planar defects (stacking fault). Amplification of the amplitude of the horizontal wave of the lattice vibration is thought when the stress was loaded.

4-2 Influence to the mechanical properties

The interaction between dislocations and the tracks has been observed (Fig. 8). Since the tracks work as the barrier for dislocation motion, it is considered that they give a large influence to the mechanical properties of the aluminum including process hardening and serration, especially in the case of high strain rate. It is necessary to revise the theory of the strength of metals at least in the case of aluminum. And this discovers has possibility that elucidate the mechanism of anomalous vacancy cluster formation in tensile ruptured metal foils which was detected by Kiritani et al.

4-3 Possibility of dislocation motion tracks formed in other face-centred cubic (FCC) metals

The accumulated dislocation motion tracks serve as planes of slip for the synchronized rotation of nanolayers[4], and the anomalous formation of point defect clusters occurs at the intersection of dislocation motion tracks formed in different orientations. It might seem logical that dislocation motion tracks would also be formed in other face-centred cubic (FCC) metals since the morphology of the ruptured tip of the thin foil is the same for all[2,3], it would be expected that the elastic strain necessary to form an dislocation motion tracks in these FCC metals would be higher, considering their higher elastic strain observed. Aluminum has a rather large lattice constant of 0.405 nm for its low atomic number of 13. It is thought that this coarse structure enables the atoms to shift to the position with a low elastic strain compared to other FCC metals.

Conclusion

Formation of dislocation motion tracks in aluminum has been discovered by the in-situ tensile experiment of transmission electron microscopy. The tracks are formed just behind the dislocations motion at the room temperature and 323K. These dislocation motion tracks were known type of planar defects (stacking fault) in a difference direction observation. The tracks disappear when the tensile stress is unloaded. In 323K the speed of the disappearance is slower than that of the room temperature. The interaction between dislocations and the tracks has been also observed. Since the tracks work as the barrier for dislocation motion, it is considered that they give a large influence on the mechanical properties of the aluminum.

References

LES Study on Hierarchical Turbulence Organized Structure Above Urban Canopy

Student Number: 07M18160 Name: Jin ZHANG Supervisor: Manabu KANDA

1 Introduction

The atmospheric boundary can be divided into two parts, mixed layer and surface layer. It is known that both of these layers influence the other to a certain degree. Most of the studies related to those layers, however, only focused on one of them. This is caused by the restriction of resources. In this study, a LES (Large-Eddy Simulation) model PALM (Parallelized Large-Eddy Simulation Model) which is capable of calculation for large domain size was employed. By using this model with TSUBAME grid cluster system in TITech, this numerical study managed to simulate both layers together which made the investigation of the coherent organized structure of turbulence within a logarithmic region of urban boundary layer possible.

The coherent structure of turbulence plays an important role in the exchange process of momentum and scalars in the near-surface region, so the study of the coherent structure would be useful in understanding the physical background of the statistical structure of wall turbulence, modeling and controlling turbulence for industrial and geophysical applications.

To investigate coherent structures of turbulence in urban boundary layer, the results are analyzed by visualization of instantaneous flow fields and by conditional averaging. A filtering technique is also employed to exclude the large scale influence from the mixed layer and to educe small scale turbulence structures. In addition, quadrant analysis and two-point correlations are performed to determine the statistical characteristics of coherent structures.

2 Overview of the numerical setting

In this study we perform LES to elucidate the phenomenology of coherent structures in the log layer above three-dimensional roughness comprised of a regular array of cubes. Figure 1 shows a plan view of the computational domain, which has a size of 2560m × 2560m × 2600m along x, y, z directions respectively, with 5m grid length. To close approximate the real atmospheric boundary, the initial temperature profile is set as showed in Figure 2. The geostrophic wind velocity and the ground heat flux are set to be 20m/s and 0.07K · m/s, respectively.

Figure 1: Plan view of computational domain

Figure 2: Initial temperature profile
3 Flow statistics

3.1 Performance evaluation

In this section, turbulence statistics from the simulation are presented, and detailed comparisons are made with measurements performed in outdoor scale model experiments for urban climate (COSMO).

Figure 3 shows the vertical profiles of potential temperature, sensible heat flux, variance of vertical velocity up to 40h (h:building height 40m) and mean streamwise velocity up to 10h. From Figure 3(a), Figure 3(b), the boundary layer height is determined as about 1200m and the influence of heat flux from entrainment layer is limited to 800m. It is critical that the boundary height is high enough so that surface layer and mixed layer are separable. From Figure 3 (c), two maximum values for σ_w exist. The upper one is at about 10h and the lower one is at about 2h. This phenomenon is considered to be caused by the convection in mixed layer and the turbulence produced by the shear in surface layer.

Figure 3 (d) shows that a surface layer could be defined up to 5h approximately where the mean velocity profile is logarithmic. We follow the meteorological convention and write the log law over rough surface as (Raupach et al. 1991)

$$u(z) = \frac{1}{\kappa} \ln \frac{z - d}{z_0}$$ \hspace{1cm} (3.1)

Where κ is von Kármán’s constant, and the parameters z_0 and d are the roughness length and zero-plane displacement, respectively. In this study, z_0 and d are 1.4m and 33m respectively. Almost identical results for d/h were obtained by Cheng & Castro (2002), where its value is 0.825.

A stability parameter showed in equation (3.2) is also derived.

$$\frac{z'}{L} = -\frac{g}{T}(\frac{\sigma_w}{\sigma_u^2}) \frac{u'_z}{u'_x}$$ \hspace{1cm} (3.2)

Here, $z' = z - d$. At 2h, z'/L is -0.038, which can be considered to be neutral, consistent with the results referred by Inagaki & Kanda (2008) in COSMO.

3.2 Spectra and Co spectra

In the study of coherent structures in COSMO, Inagaki & Kanda(2008) observed that the low frequency part of the streamwise velocity spectra was larger than the field observation results in the Kansas experiments (Kaimal et al., 1972). In contrast, the counterpart of vertical velocity spectra and Reynolds stress cospectra had good agreements with Kaimal’s results. By removing the instantaneous spatial mean component, the low frequency part of the streamwise velocity spectra decreased significantly. This means the low-frequency fluctuations of streamwise velocity didn’t follow the inner-layer scaling similarity due to the outer-layer disturbance.

Figure 4 shows the spectral densities and wavenumbers which were normalized by the surface layer variables u- and z', respectively. The reference curves are from the Kansas experiments and COSMO observations.

Two curves from this simulation are plotted in this figure. PALM_TS was derived from time series data at 8 points along the y direction at 2h. PALM_SP was derived from the averaging of the spatial data along the x direction. The results of PALM_SP were the largest. This reflects the energy imbalance problem in a point observation. It is known that the flux obtained by using time series data from point observations tends to be underestimated. Since PALM_SP evaluated all the velocity information at xy cross section, the spectral densities turn out to be larger.

The spectra and cospectra in the high frequency region of PALM_TS exhibit good agreement with other experiments results, but the low frequency spectra for this study was not produced. This could be caused by two possibilities: the small domain size along x direction, or the larger damping for outer layer vortices due to the large building size.

Figure 3: Vertical profiles of various flow statistics

Figure 4: Comparison of spectra and cospectra
4 Coherent structures

In this section the coherent structures in the surface layer will be investigated through the methods of two-point correlations, quadrant analysis, spatial averaging and conditional averaging.

4.1 Two-point correlations

Two-point velocity correlation defined by

\[R_{uu}(y, \delta y) = \frac{u'(y)u'(y+\delta y)}{\sqrt{u'^2(y)u'^2(y+\delta y)}} \]

are computed for separation \(\delta y \) in the spanwise and streamwise directions at 2h, 3h, 4h heights, respectively. Figure 5 shows that the spanwise width and streamwise length increase with height. By comparing Figure 5 (a) and (b), it is obvious that the streamwise length is larger than spanwise width, but the aspect ratio of length to width of the \(R_{uu} = 0.7 \) is approximately constant as 2.4 with increasing height. This means that the streamwise and spanwise length scales increase roughly in the same proportion with distance from the wall. So the overall shape of the structures is preserved on average.

4.2 Quadrant analysis

In the quadrant analysis technique, one considers the frequency of occurrence and contribution to Reynolds stress of velocity fluctuations lying in the four quadrants defined by

\[
\begin{align*}
S1: & \quad u'>0, w'>0 \\
S2: & \quad u'<0, w'>0 \\
S3: & \quad u'<0, w'<0 \\
S4: & \quad u'>0, w'<0
\end{align*}
\]

Figure 6 shows the relative number of ejections (S2), sweeps (S4), and their relative contribution to the Reynolds stress. Away from the roughness, there are more sweeps, but the ejections are more significant based on their contribution to the Reynolds stress. The results are different to what is observed in COSMO, where the S4 are dominant in surface layer due to large influence from the mixed layer. Since there is large correlation between ejection (S2) and coherent structures, by comparing with Figure 5, it seems that the larger coherent structures at higher level in the surface layer relatively contribute more ejections to the Reynolds stress.

4.3 Spatial averaging

In COSMO’s study, an instantaneous spatial average in a horizontal small section to separate the inactive turbulence

\[\phi' = [\phi'] + \phi'' \]

where the square brackets and the double prime indicate the mean and fluctuation of the spatial average in a finite area, respectively. In this study, two different averaging areas are used: a square area with 8h, and another with 2h on a side. The 8h averaging area is used to remove the inactive influence from the mixed layer, since this scale is in the middle of large scale turbulence in mixed layer, and small scale turbulence induced from the surface.

Figure 7 shows a contour plot of fluctuating streamwise velocity \(u'' \) at 2h. The low speed regions (black) are elongated in the streamwise, which corresponds to the results in section 4.1.
In Figure 8, the area enclosed by the white box in Figure 7 is enlarged. The grey regions represent strong ejections that were two times larger in magnitude than the temporal mean of $u^\prime v^\prime$. It is observed that there are strong vortices on both sides of the ejection areas. To clarify the relationship between the ejections and their surrounding vector fields, a conditional averaging method is used.

4.3 Conditional averaging

To deduce the dominant structures, a local minimum velocity below a threshold was set at 75% of the spatial mean velocity. Flow information around these threshold points were averaged three-dimensionally.

Figure 9 shows fluctuating velocity vector fields and contours of fluctuating streamwise velocity u^\prime from spatial averaging (8h) at $z = -0.5h$, 0, and 0.5h, where $z = 0$ is the reference height at 2h (Figure 10). At each height, there is a pair of counter-rotating vortices with an elongated low-speed region between. As height increases, the center of the vortices shifts from upwind to downwind. The counter-rotating vortices are considered to be the legs of the hairpin vortices and the shift of the vortex center means the legs of hairpin vortices have an inclination angle with respect to the ground.

Two-point correlations based on the spatial averaging results are also computed in the horizontal and vertical planes through conditional averaging. Figure 11 (A), (B) are the contours of R_{uu} in xy cross section through $z=0$ and R_{vv} in zx cross section through $y=0$, respectively. Figure 11 (A), (b) are the counterparts derived with small spatial averaging length 2h. Both of u and v show good similarity in structure with different spatial averaging lengths. The aspect ratio of spanwise width to streamwise length, as defined by the $R_{uv}=0.4$ contours, is approximately equal to 2 in both cases. The contours of R_{vv} in Figure 11 (B), (b), show that both of the structures have an inclination angle with respect to the surface, which could be inferred as the vortex leg observed in Figure 9.

Figure 9: Fluctuating velocity vector fields and contours of fluctuating streamwise velocity u^\prime. A, B, C are the cross sections showed in Figure 10.

Figure 10: The domain size of conditional averaging for the data derived from large spatial averaging (8h). A, B, C correspond to the xy cross sections in Figure 9.

Figure 11: Contours of two-point correlations (A), (B): R_{uu} and R_{vv} at xy cross section and yz cross section respectively. (a), (b): the counterparts of (A), (B) with small spatial averaging data (2h).

5 Conclusions

In this study, LES has been conducted to investigate the coherent structures of turbulence within the surface layer in urban atmospheric boundary layer. Following results have been obtained.

1. The similarity of the inner-layer statistics is applicable for urban boundary layer.
2. The averaged aspect ratios of the coherent structures are preserved in the surface layer.
3. The number of coherent structures decreases with height, but the contribution of ejections from coherent structures increases in the surface layer.
4. Counter-rotating vortices that are considered to be vortex legs of the hairpin vortices are observed along the sides of the low speed regions.
5. Large scale turbulence and small scale turbulence derived with different spatial averaging length exhibit good similarity in their structures.

References

Impact of Angular Power Spectrum (APS) on the Achievable Diversity Gain and MIMO Capacity in a Mobile Terminal

Student Number: 07M18177 Name: Elnaz FOROUGHI SHAFIEI Supervisor: Jun-ichi TAKADA

Abstract

The array antenna systems in the mobile terminals, such as antenna diversity has been evaluated under the uniform (omnidirectional) angular power spectrum. The influence of angular power spectrum (APS) together with the user rotation on the performance of antennas are examined. Omnidirectional and unidirectional angular power spectrum models are investigated for direction diversity and space diversity in a multipath environment. The goal of this research is to provide a guideline for how much in detail APS should be modeled for the evaluation of an array antenna system in a mobile terminal.

1 Introduction

An antenna in a wireless communication system is the device through which, in the transmission mode, radio frequency energy is coupled from the transmitter to the free space, and from free space to the receiver in the receiving mode. In many applications, it is necessary to design antenna with very directive characteristics (very high gain) or very high efficiency, to meet demands for different types of communication scenarios.

There are many classical parameters to evaluate antenna systems, of which directivity and efficiency are the most common. However, for the array antennas in the multipath environment, classical parameters of the antenna such as directivity and efficiency are not sufficient for the evaluation of the performance of the antenna system as a whole [2]. Propagation channel should be taken into account for the appropriate evaluation [1]. There exists some channel models proposed for antenna evaluation. However, they are too complicated for the comparative evaluation of the array antennas of the user terminal as those models are originally developed for the purpose of the system level performance evaluation [1]. Development of channel model for antenna evaluation is still a major issue.

In order to examine the performance of antennas in various environments, this research examines the influence of concentrated angular power spectrum (APS) on the performance of user terminal array antennas, using diversity technique. Diversity scheme refers to a method for improving the reliability of a message signal by utilizing two or more communication channels with different characteristics. The main purpose is to coherently combine the independent paths so that the effects of the multipath is mitigated. There are many diversity techniques, of which we focus on space diversity and direction diversity in this research.

One method is to use multiple transmit or receive antennas, where the elements of the array are separated in distance. This type of diversity is referred to as space diversity [4]. In this case, independent paths are realized without an increase in transmit signal power. In direction diversity, angle is provided by restricting the receive antenna beamwidth to a given angle [4]. The use of narrow beamwidth provides angle discrimination that can reduce interference.

In order to concentrate on only the impact of APS, very simple modeling and evaluation scheme are deployed, i.e. the APS and the directivity of the antenna are simplified and the diversity performance is evaluated.

2 Antenna Evaluation Approach

In this section the approach of the antenna evaluation is presented. To simplify the formulation, APS is concentrated into horizontal plane and only the azimuth APS is considered. In order to focus on the influence of concentrated APS together with the user rotation to the performance of the array antennas, a 2-Dimensional analysis is done for simple analytical treatment [2].

The correlation matrix of UT array can be derived in the same manner as the correlation matrix of the diversity antenna. APS for vertical polarizations are defined as \(p_{\text{UT}}(\varphi) \) to satisfy the following normalization condition.

\[
2 \int_{0}^{2\pi} \{p_{\text{UT}}(\varphi)\} \, d\varphi = 1 \tag{1}
\]

To represent the UT antenna characteristics, polarimetric complex directivity of \(i \)-th user terminal antenna is defined as \(e_{\text{UT}}(\varphi) \) for \(\varphi \) also to satisfy the normalized condition in the same manner as the antenna gain as

\[
\frac{1}{2\pi} \int_{0}^{2\pi} \{|e_{\text{UT}}(\varphi)|^2\} \, d\varphi = \eta_i \tag{2}
\]

where \(\eta_i \leq 1 \) is the efficiency of the \(i \)-th UT antenna considering the loss and mismatch.
The complex correlation matrix of i-th and j-th branches of UT array is then calculated by using APS and the complex antenna directivity of UT antenna array as

$$[R_{UT}]_{ij} = 2 \int_0^{2\pi} \left\{ e^{i \varphi} \epsilon(u_i) \epsilon^*(u_j) p_{UT}(\varphi) \right\} d\varphi$$ (3)

3 Impact of Angular Power Spectrum

In order to examine different environmental characteristics, two APS models are considered, omnidirectional APS $p_G(\varphi)$ and Gaussian unidirectional APS $p_G(\varphi)$. They are defined as

$$p_G(\varphi) = \frac{1}{2\pi}$$ (4)

$$p_G(\varphi, \varphi_0, \Delta \varphi_p) = A_{\Delta \varphi_p} \exp \left(\frac{(\varphi - \varphi_0)^2}{2 \Delta \varphi_p^2} \right)$$ (5)

where φ_0 is the angle of arrival (AoA) varying within $[0, 2\pi]$ according to the rotation of the user terminal, and $\Delta \varphi_p$ is the standard deviation of the Gaussian functions for angular power spectrum (APS).

The two-element complex directivities of space diversity array with half-wavelength separated omnidirectional elements are defined as,

$$e_{S1}(\varphi) = \frac{1}{\sqrt{2}} \exp \left(-j \frac{\pi}{2} \cos \varphi \right), \quad \pi < \varphi < \pi$$ (7)

$$e_{S2}(\varphi) = \frac{1}{\sqrt{2}} \exp \left(+j \frac{\pi}{2} \cos \varphi \right), \quad \pi < \varphi < \pi$$ (8)

The two-element complex directivities of direction diversity array π separated Gaussian unidirectional elements are defined as follows:

$$e_{G1}(\varphi) = B_{\Delta \varphi_p} \exp \left(-\frac{\varphi^2}{2 \Delta \varphi_p^2} \right), \quad \pi < \varphi < \pi$$ (9)

$$e_{G2}(\varphi) = B_{\Delta \varphi_p} \exp \left(\frac{(\varphi + \pi)^2}{2 \Delta \varphi_p^2} \right), \quad 2 \pi < \varphi < 0$$ (10)

where satisfying Eq. (2),

$$\frac{1}{B_{\Delta \varphi_p}^2} = \frac{\Delta \varphi_p}{\pi} \int_{-\pi}^{\pi} \exp \left(\frac{\varphi^2}{2 \Delta \varphi_p^2} \right) d\varphi$$ (11)

The matrix elements of $[R_{UT}]_{ij}$ can be obtained by substituting p_G, ϵ_{S1} and ϵ_{S2} in Eq.(3), and p_G, ϵ_{G1} and ϵ_{G2} in Eq.(3) for space diversity and direction diversity respectively.

The eigenvalues are calculated by general

Eigenvalue decomposition (EVG) as,

$$R_{UT} = E \Lambda E^H$$ (12)

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$ (13)

where E is unitary and Λ is diagonal matrix of Eigenvalues λ_1 and λ_2.

In this research, the two-branch diversity is considered. The characteristic equation can be analytically solved and the eigenvalues are given as,

$$\lambda = \frac{1}{2} \left\{ \left(R_{11} + R_{22} \right) \pm \sqrt{\left(R_{11} + R_{22} \right)^2 - 4 R_{11} R_{22} R_{12} R_{21}} \right\}$$ (14)

Once the eigenvalues of the correlation matrix is known, cumulative distribution function (CDF) $F(\gamma \leq x)$ of output SNR of the maximum ratio combining (MRC) can be presented by the following equation [1],

$$F(\gamma \leq x) = \frac{1}{\lambda_1} \left[\lambda_1 \left\{ 1 \exp \left(\frac{x}{\lambda_1} \right) \right\} \lambda_2 \left\{ 1 \exp \left(\frac{x}{\lambda_2} \right) \right\} \right]$$ (15)

Various parameters are used to represent the characteristics of the antenna and the environment.

Beamwidth is defined as the range of angle where the antenna power gain is within the half of the peak. Also, **Angular Spread** is the standard deviation of the angular power spectrum.

The **Reference Antenna** used in the study is a single omnidirectional antenna [5], under the same APS. The reference measurement is taken in the same setup as for the real measurement and then compared.

Diversity antenna gain-outage probability (DAG-OP), is the improvement of SNR from the reference antenna as the CDF of a certain probability, which is set to 1[\%] in this study. The CDF graph for the reference antenna ($F_{\text{REF}}(\gamma < x)$) and the measurement antenna ($F_{\text{MES}}(\gamma < x)$), is obtained as shown in Fig.1, where γ is the SNR at the receiver. Then the difference of respective SNRs when $F_{\text{REF}}(\gamma_{\text{RES}} < x) = 0.01$ and $F_{\text{MES}}(\gamma_{\text{MES}} < x) = 0.01$ is calculated as

$$DAG_{\text{OP}} = \gamma_{\text{MES}} - \gamma_{\text{REF}}$$ (16)

where, γ_{RES} is defined so that $F(x \leq \gamma_{\text{RES}}) = 0.01$.

82
Figure 1: CDF of relative SNR for reference antenna, space diversity and direction diversity

Figure 2: Angle of Arrival (AoA) dependence of the eigenvalues of correlation matrices

4 Numerical Results

The variation of eigenvalues for the four scenarios explained in section 3 is shown in Fig.2. The eigenvalues represent the equivalent uncorrelated branch powers. The eigenvalues are fluctuating along φ_0(AoA) for Gaussian unidirectional APS. The gap of the eigenvalues is the biggest when φ_0 is 0 and π. The fluctuation of the graph is to a great extent reduced for the Gaussian omnidirectional APS.

To analyze the impact of APS on array antennas, simulations were conducted for space diversity and direction diversity antenna arrays under different angular spreads (AS), and the impact of beamwidth was also analyzed.

The simulation condition is presented in Table.1.

Table 1: Parameters Used in Simulation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>AoA</th>
<th>AS</th>
<th>BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>0[deg]</td>
<td>0</td>
<td>360[deg]</td>
</tr>
<tr>
<td></td>
<td>90[deg]</td>
<td>0</td>
<td>360[deg]</td>
</tr>
</tbody>
</table>

The DAG-OP characteristics of space diversity antenna for the two extreme cases of AoA=$0[\text{deg}]$ and AoA=$90[\text{deg}]$ is shown in Fig.3. As shown in the figure, when AoA=$0[\text{deg}]$, when AS is very small,
the gain is low. The reason is, only one antenna has recognition in this case. When AS is small, for the AoA of 0[deg] and 90[deg], the DAG-OP starts from different values. However, after the AS increases more than 90[deg], the DAG-OP of both angle of arrivals of 0[deg] and 90[deg] reach the same value. This means when the AS is big, both cases they show omnidirectional behavior. Fig.4 shows the DAG-OP characteristics of space diversity antenna when the AoA is averaged over 0[deg] to 360[deg]. As shown in the figure, this case also shows a similar behavior to the previous ones.

The DAG-OP characteristics of direction diversity (Gaussian) antenna for angle of arrival of 0[deg] and 90[deg] the 3-D graphs are shown in Fig.5 and Fig.6 respectively.

For the case of AoA=0[deg], when the AS and BW are small, the gain is very high, and it reduces when the they increase. Also it could be observed that when BW increases, the antenna shows omnidirectional behavior. Meanwhile, as the AS increases, the gain also increases.

In contrast, for the case of angle of arrival of 90[deg], when the AS and BW are small, the DAG-OP starts from a very small value. This is because for this case, the unidirectional antenna almost can not recognize the APS. The gain then increases when the AS and BW increase. This also proves that similar to AoA=0[deg], for the AoA=90[deg], when the BW and AS are big, they show omnidirectional behavior.

Fig.7 shows the DAG-OP characteristics of direction diversity antenna when the AoA is averaged over 0[deg] to 360[deg]. As shown in the figure, this case also shows a similar behavior to the previous ones.

5 Conclusion

This research examined the influence of concentrated angular power spectrum (APS) on the performance of user terminal array antennas, for the cases of space diversity and direction diversity. In order to concentrate on only the impact of APS, very simple modeling and evaluation scheme was proposed, and the diversity performance was evaluated. It can be observed that for both cases space and direction diversity, when the angular spread is very high, the gain is independent of beamwidth and angle of arrival. Also in the direction diversity case, for very high beamwidth, the gain becomes independent of angle of arrival and angular spread. This study shows that the justification of use of omnidirectional APS instead of unidirectional APS is rejected. As shown in this research, in reality, when the angular spread is very small, the diversity antenna gain is also very small and so they show different behaviors.

References

Figure 6: DAG-OP Characteristics where AoA $\varphi_0 = \frac{\pi}{2}$ -3D Plot

Figure 7: DAG-OP Characteristics where AoA is averaged over $\varphi_0 = 0$ to $\varphi_0 = 2\pi$ -3D Plot
1. Introduction

Constructing geotechnical structures such as an embankment on soft ground cause often more or less settlement deformation. Prediction of the settlement of the embankment is useful for taking appropriate measure in the planning/construction stage, and taking countermeasure such as rational reparation in the maintenance/management stage.

Recently, because of the technological advance of the computer and FEM (finite element method) technique, the case prediction of the settlement by two-dimensional analysis is gradually increasing. Although it is simple to understand the deformation of a geometric by two-dimensional analysis, there is the same time much disadvantage since high cost (demanded for time and talented people) and special technique such as some obvious analyzed conditions (boundary condition, geometrical condition) are required. And it is difficult to avoid completely the error. However, the one-dimensional consolidation analysis based on Terzaghi’s consolidation theory is still used up to now in engineering practice because of its low cost and simple technique.

In certain different geometrical condition of the embankment, analysis result showed that the settlement computed by two-dimensional analysis is close to the one computed by one-dimensional consolidation analysis.

In this study, some constructed embankments will be computed in one-dimensional and two-dimensional analysis by soil/water coupled analysis technique which was developed by Iizuka and Ohta (1987) [1] and revised by Takeyama (2007) [3], and the practicability was confirmed in past researches. The analysis technique employs an elasto-viscoplastic constitutive model proposed by Sekiguchi and Ohta (1977) [4]. In addition the applicability of one-dimensional and two-dimensional soil/water coupled analysis in settlement prediction of embankment will be discussed.

2. Difference between one-dimensional and two-dimensional settlement

Figure 1 shows the difference between one-dimensional and two-dimensional settlement.

![Figure 1: Difference between one-dimensional and two-dimensional settlement](image)

(a) narrow fill (P3)

(b) wide fill (P1)

(c) one-dimensional settlement

- The modification of circle by the maximum and minimum principal strain (2.5 times of strain)
- The vectors of displacement (2.0 times of displacement)

These two analysis results Figure 1(a) and Figure 1(b) are drawn based on the two-dimensional analysis results of Nagasaki Highway site which will be introduced in Chapter 4. Figure 1(c) shows...
the deformation of the subsoil layers when the width of the embankment is infinite. The circles and the ellipses show the maximum and minimum principal strain on the left of the figure, and the arrows show the displacement of clay layer on the right of the figure.

When fill materials are laid on soft ground, the centre of an embankment settles right under, and the top of slope and the toe of the embankment settle and displace to the outside. In some cases, the toe of the embankment swells from the surface of the ground contrarily. Paying attention to the behavior of the subsoil elements beneath the embankment, we can find that the two-dimensional deformation strongly appear so as to leave the centre of the embankment. Overall, the settlement by two-dimensional analysis at the centre of the embankments is close to the one-dimensional analysis, but it does not mean that there is a one-dimensional consolidation.

For this reason, investigation on the difference between one-dimensional and two-dimensional analysis by referring to two evaluation indicators are proposed. First indicator is B/D which is the ratio of the filling width (B) to thickness (D) of soft ground, and second is A (approximation) which is the ratio of the difference between settlements computed by one-dimensional analysis and two-dimensional analysis to the settlement computed by two-dimensional analysis. It is considered that A will approximate to 0 when B/D is infinite, whereas this value reduced below unity when B/D is small.

3. Analysis Site (Akita Highway)

Akita Highway was constructed in 1993, and opened for traffic from 1997. This analysis site is called Soto-asahikawa in the part of Akita Highway project which was constructed on an overlain by very soft organic clay which deposited on sloping base. The three embankment cross-sections analyzed in this paper are also shown in Figure 2 as their name BC11, BC21, and BC31. The geologic figures of these sections are illustrated in Figure 3.
drainage condition of upper surface of which the hydraulic head is set with 0 for modeling as drainage boundary shown in Figure 4. In two-dimensional analysis, the surface of the ground and embankment is set as drainage boundary. And input parameters used in one-dimensional analysis are completely the same as two-dimensional analysis.

Analysis of BC21 could not finish until completion of construction because critical failure occurred under the fill. The settlements at the centre of BC11 and BC31 of embankments computed in two-dimensional analysis agree well with the monitored settlement. But the one-dimensional analysis predicts settlement smaller than two-dimensional analysis. The simulation results are BC11 cross-section shown in Figure 5.

![Figure 5: Simulation results (BC11)](image)

4. Analysis Site (Nagasaki Highway)

This is another analysis site, Nagasaki Highway site. Six embankments were constructed as the preload at Nagasaki Highway in the Takeo-Kitakata Interchange project in Kyushu.

![Figure 6: Location of Nagasaki Highway site](image)

Site plan and soil profile are shown in Figure 6. Five case studies are carried out for embankments for P1 through P4 and P6. Embankment P5 is excluded from the analysis because of special improved with lime-treated columns. The subsoil foundation consists of an alluvial clay layer and gravel bed containing silt and sand. The soft clay is uniform and highly sensitive. The shape of each embankment and subsoil layers are summarized in Figure 7.

![Figure 7: Shapes of embankments and subsoil layers](image)

In one-dimensional analysis, the boundary drainage conditions of upper and lower surface of intermediate sand layer are set with the hydraulic head is 0 for modeling as drainage layer. And input parameters used in one-dimensional analysis are completely the same as in two-dimensional analysis.

![Figure 8: Boundary condition of one-dimensional and two-dimensional analysis](image)

![Figure 9: Simulation results (P1)](image)
The simulation results of section P1 and P3 are shown in Figure 9 and Figure 10. Both the one-dimensional and two-dimensional analysis can simulate the settlement behavior well.

5. B/D and Approximation

Two indicators were proposed in Chapter 2. B/Ds of all analyzed sections are summarized in Table 1 except BC21 of Akita Highway site of which the analysis actually stopped at about 370 day because of critical failure of many elements. In Table 1, \(S_{1D} \) is the settlement computed by one-dimensional analysis, and \(S_{2D} \) is the settlement computed by two-dimensional analysis.

Table 1: B/Ds and settlements in analysis sites

<table>
<thead>
<tr>
<th>section</th>
<th>Akita Highway</th>
<th>Nagasaki Highway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BC11</td>
<td>BC31</td>
</tr>
<tr>
<td>(H (m))</td>
<td>11.7</td>
<td>13.7</td>
</tr>
<tr>
<td>(B (m))</td>
<td>84.0</td>
<td>99.5</td>
</tr>
<tr>
<td>(D (m))</td>
<td>17.5</td>
<td>26.0</td>
</tr>
<tr>
<td>(B/D)</td>
<td>4.7</td>
<td>3.7</td>
</tr>
<tr>
<td>(S_{2D} (m))</td>
<td>3.38</td>
<td>4.70</td>
</tr>
<tr>
<td>(S_{1D} (m))</td>
<td>3.02</td>
<td>3.82</td>
</tr>
</tbody>
</table>

The correlation between B/D and Approximation is shown in Figure 11. Overall, if the maximum error about 20% (the gray area in the Figure 11) is admissible for the construction sites, the prediction computed by two-dimensional analysis in any shape of embankment and bedrock can be replaced by the prediction computed by one-dimensional analysis.

6. Conclusion

The conclusions acquired in this paper are summarized as follows:

1) The applicability of one-dimensional soil/water coupled analysis in consolidation settlement prediction of embankment is presented.

2) According to the comparisons between the settlements, in the case of Akita highway of which B/D is low, two-dimensional analysis can simulate the settlement behavior well, but one-dimensional analysis cannot, and in the case of Nagasaki Highway of which B/D is high, both the one-dimensional and two-dimensional analysis can simulate the settlement behavior well.

3) In this study, when the maximum error about 20% is admissible for the construction sites, the prediction computed by two-dimensional analysis in any shape of embankment and bedrock can be replaced by the prediction computed by one-dimensional analysis.

References

Experimental study on adhesion behavior between rough surfaces of solid bodies

Student Number: 07M18190 Name: LEI Lei Supervisor: TAKAHASHI Kunio

1 Introduction

The effect of adhesion on elastic contact is significant in joining technology as well as micro- and nano-scale applications (e.g. micro-/nano-electromechanical systems (MEMS/NEMS) components). The adhesion contact between an infinite elastic body and a rigid body with single-sinusoidal surface roughness has been solved theoretically by Rachmat[1]. The hysteresis of the contact is assumed as an energy dissipation and a simple treatment for the dissipation is proposed by Johnson[2]. The mechanism of the dissipation energy by the surface sub-roughness was theoretically and experimentally investigated by Guduru[3][4], although the investigation is only for the point contact. In case of point contact, the adhesion force is only dependent on the surface shape (curvature) and the work of adhesion. However, in case of area contact, the adhesion force not only depends on the work of adhesion and surface shape, but also depends on the elastic constant. Using the elastic constant dependency property, it is possible to design a mechanism to control grip and release.

The present study is based on Rachmat’s theory[1]. The mechanism of hysteresis and the possibility of grip and release by varying elastic constant are investigated experimentally.

2 Theory

\[\tilde{p} = \sin^2(\pi a/\lambda) \]

\[\Delta \gamma \left(1 + (2\pi h_0/\lambda)^2 \sin^2(2\pi a/\lambda) \tan(\pi a/\lambda) \right)^{1/2} \]

\[\tilde{p} = \tilde{p}(E\pi h_0/\lambda), \quad \Delta \gamma = \Delta \gamma/(E\pi h_0^2 \pi^2/(2\lambda)), \]

\[E^* = E/(1 - \nu^2) \]

The solid line in Fig.2 shows the plot of Eq.(1). As shown in Fig.2, at the initial contact of the two bodies without external pressure, the contact width increases from A to B where the energy is at its local minimum. After that, if we give a pressure between D and C, the contact width changes along the solid line. If we give a pressure larger than C, the contact will snap to the perfect contact. If we give a pressure less than D, the contact will be separated.

![Fig. 1 Model of adhesional contact between a semi-infinite elastic body and a rigid body having sinusoidal surface roughness.](image)

![Fig. 2 The relation between the normalized external pressure and the normalized contact width for h0/λ=0.1, Δγ=0.1](image)

2.1 Sub-roughness model

In Rachmat’s theory[1], the roughness is assumed to be single-sinusoidal. However, the actual surfaces have another sub-roughness on the sinusoidal roughness. The effect of the sub-roughness on the adhesion could be explained in the same manner as the work done by
Technical Report of International Development Engineering

Guduru (2007)[3], which shows the effect of the sub-roughness on point contacts. But the contact in the present study is area contact.

![Figure 3](image)

Fig. 3 Schematic illustration of the relation between the total energy and the contact width.

Figure 3 shows a schematic illustration of the relation between the total energy and the contact width. The existence of the sub-roughness is supposed to change the energy curve from the solid line to the broken line. The most stable state is point C. However it might stop at a locally stable point A, due to the existence of the sub-roughness. In the same manner, in case of unloading, the contact width might stop at E. Therefore we can observe the hysteresis loop between the loading and unloading process. Since Guduru’s theory[3] is for point contact, it can not be applied to the present case. However, the effect of the sub-roughness can be quantitatively discussed using the concept of this theory.[3] Furthermore, the effect can be approximately explained using the theory of Johnson.[2]. In the same manner as the theory[2], we can assume that excess energy is required both in loading and unloading processes, to overcome the energy gap ΔE in Fig.3, respectively. Since the energy release rate G is expressed by

$$G = \Delta \gamma$$

(2)

in case of no sub-roughness, we have to add some excess energy corresponding to the energy gaps. So, during loading, the energy release rate must be changed to $-G = -\Delta \gamma + aG$, and during unloading, $G = \Delta \gamma + aG$. Therefore, the hysteresis can be expressed by replacing the $\Delta \gamma$ in Rachmat’s theory[1] by

$$G = \Delta \gamma / (1 + \alpha)$$

(3)

$$G = \Delta \gamma / (1 - \alpha)$$

(4)

An example of the loading and unloading processes is plotted in Fig.2 with dashed lines, using $\alpha = 0.5$.

2.2 Grip and release by varying elastic constant

The pressure at point (D) and point (C) in Fig.2 are dependent on $\Delta \gamma$. Their relations are shown in the plot in Fig.4. In this figure, curve Q_1 shows the separation point (D). Curve Q_1Q_2 shows point (C) approaches a state of perfect contact. After normalizing the curve Q_1Q_3 in Fig.4 by the following methods (Eq.5~6), the relation between the pressure required to separate the partially contacted interface and the elastic constant can be obtained, as shown in Fig.5.

![Figure 4](image)

Fig. 4 The relations between the work of adhesion and the external pressure for $h_0/\lambda = 0.1$.

An example of the loading and unloading processes is plotted in Fig.2 with dashed lines, using $\alpha = 0.5$.

![Figure 5](image)

Fig. 5 The relation between the elastic constant and the external pressure required to separate the interface, partially contacted.

$$\bar{\sigma}_{sep.} = \sigma_{sep.} / (\Delta \gamma / \lambda)$$

(5)

$$\bar{E} = E^* / (\Delta \gamma / \lambda)$$

(6)

Figure 5 suggests that three-figure of change in elastic constant is required to make one-figure of change in adhesional force.

3 Experiment system and procedures

A transparent silicon rubber (FUSOUGOMU) of 15 mm (z) \times 38 mm (x) \times 10 mm (y) is used as the elastic body. The elastic constant is measured as shown in Fig.6, and $E^* = 60$ is obtained. Aluminum alloy blocks (purity 99.95%, 30 mm (z) \times 37.5 mm (x) \times 3 mm (y) are used as the rigid body. Their surface are processed to have sinusoidal roughness of two different amplitudes, such as, $h_0/\lambda = 0.04, h_0/\lambda = 0.02, \lambda = 5$ mm, by using a wire-cutting
machine. The surfaces are then polished carefully using alumina particles (Baikalox, 0.1CR).

Figure 7 shows the experimental system, which consists of (A) an electronic balance (Sartorius, TE153S) to measure the external pressure, (B), (C) automated precise stages, crossed roller stage and goniometer Stage (Surgu Seiki, K701-20LMS, B43-38N, B54-60UNR) to adjust the vertical position and the angle of the elastic body, and (D) an optical microscope (KEYENCE, VH-7000) to observe the contact width through the transparent rubbers. The experiment is done in an acrylic box to avoid the effect of dusts and moisture. The samples are cleaned in an ultrasonic bath with alcohol and set on the system as shown in Fig.7. The horizontal angles of the elastic body are adjusted by the stages (C) and the samples are driven by automated stage (B). The contact width at the center of the sample is observed. In each measurement of the force, it takes 3 to 10 (min) to obtain stable width.

4 Results and discussion

Figure 8 shows the hysteresis measured under dry condition and an oily condition for \(\alpha = 0.02 \).

As shown in these figures, the comparable hysteresis is observed even in the oily condition as well as in dry condition and the hysteresis seems independent of the stress. These results suggest that the hysteresis is not mainly due to the surface friction. Since no hysteresis is observed in the measurement of elastic body as shown in Fig.6, the mechanism of the hysteresis is considered to be due to the energy gaps caused by the surface sub-roughness.

The Eq(1) is fitted to the experimental results as shown in Fig.10 and 11. As the results, \(\Delta \gamma = 0.063J/m^2 \) and \(\alpha = 0.578 \) are obtained for the sample shown in Fig.10, and \(\Delta \gamma = 0.027J/m^2, \alpha = 0.793 \) are obtained for the sample shown in Fig.11. Consequently, adhesion is very sensitive to the surface condition. So, the fitting result of the work of adhesion is different between Fig.10 and Fig.11. The experimental results show a good agreement with the theory in the loading processes. On the other hand, in the unloading process, the measurement results does not agree well with the in loading process. Furthermore, the unloading process of Fig.10 and 11 shows the same tendency. The mechanism of the ten-
pressure required to snap to perfect contact decreases, as shown in Fig.12.

As shown in Fig.6 at this stress the elastic process. The pressure is decreased from the contact region, corresponds to the stress

\[\sigma = \frac{E}{1+\nu} \]

\(E \) being the elastic constant of the shape memory gel is \(2 \times 10^5 \) Pa above 50°C, and \(10^5 \sim 3 \times 10^6 \) Pa below 30°C. The theory suggests the work of adhesion \(\Delta \gamma \) to be 0.16 ~ 0.72 J/m², which is well acceptable from the view point of material science. The dispersion of the measurements seems larger than that at the lower temperature. It could be due to the stability of temperature and the alignment process, which is easier at the lower temperature than that at higher temperature. Since the elasticity dependence of the separation stress is well expressed by the theory, it can be used for the design of grip-and-release devices.

Figure 14 shows experimental results of the separation stress as a function of the elastic constant. A shape memory gel prepared by professor Gong is used. The elastic constant of the shape memory gel is \(2 \times 10^5 \sim 5 \times 10^7 \) Pa above 50°C, and \(10^7 \sim 3 \times 10^8 \) Pa below 30°C. The theory suggests the work of adhesion \(\Delta \gamma \) to be 0.16 ~ 0.72 J/m², which is well acceptable from the view point of material science. The dispersion of the measurements seems larger than that at the lower temperature. Since the elasticity dependence of the separation stress is well expressed by the theory, it can be used for the design of grip-and-release devices.

5 Conclusion

The adhesion contact between the silicon rubber and the Aluminum alloy block having sinusoidal roughness is investigated using Rachmat’s theory [1] considering the surface sub-roughness. Based on the sub-roughness model, the work of adhesion and the parameter \(\alpha \) can be obtained from the measurements. The pressure required to snap to perfect contact and to separate the contact can be well predicted using the work of adhesion and the parameter \(\alpha \).

Based on Rachmat’s theory[1], the possibility of grip and release by varying elastic constant is considered. The experimental results, by using shape memory gel, was in good agreement with the theoretical prediction.

References

Phenols-polluted Water Treatment Using Enzyme and Recovery of Free Enzyme

Student ID: 07M18208 Name: He LI Supervisor: Prof. Sachio HIROSE,
Associate Prof. Naoya ABE

フェノール系排水の酵素的処理とその遊離酵素の回収に関する研究

李 賀

Abstract

Phenolic compounds are discharged in the wastewater streams of various industries such as coal conversion, wood preservation, olive oil factory, metal casting, pulp, paper manufacturing and so on. Most of these compounds are toxic and have been classified as hazardous pollutants. Phenols in water have special adverse effects since as little as 0.005mg/L of phenol will cause objectionable tastes and odors when it combines with chlorine to form chlorophenols.

There are many advantages of an enzyme-based treatment over conventional biological and chemical/physical treatment which have been discussed by Nicell et al. (1993) [1]. In most instances, physicochemical treatment processes are not very selective in condition that the number of pollutants removed during treatment; therefore, such processes are more economically feasible for the treatment for dilute wastewater. Chemical oxidation, for example, can become very expensive for high strength wastes, although the targeted pollutants might have a low concentration. Activated sludge is commonly used to reduce organic compound in municipal and industrial wastewater; however it has difficulty in removing toxic pollutants to low levels (Aitken, 1993) [2].

Enzymes have a major appeal in chemical processes as ‘green chemistry’ reagents, which will allow future sustainable development. Biological technologies dealing with the use of oxidoreductive enzymes, for instance, laccases, peroxidases and tyrosinases, may represent an efficient, alternative way to address the clean up of phenol-polluted wastewater. And they show many attractive properties for biotransformation, such as wide specificity, high stability in solution, and easy availability from plant materials.

In enzyme-based treatment method, various enzymes such as Horseradish peroxidase (HRP), Coprinus macrorhizus peroxidase (CMP), Arthromyces ramosus peroxidase (ARP), and Soybean peroxdase (SBP) have proven to be effective in removing phenolic compounds from water (Al-Kassim et al., 1993, Mceldoon et al., 1995) [3-4]. Among these enzymes, HRP is the most widely used due to the stability and its advantage in production. However, there were only few studies that focused on the mixture wastewater and high cost of enzyme still remains as a challenging in enzyme treatment. Thus, the recycle of enzyme could be a way for practical application.

In this study, the type of enzyme was selected at the first. Catalytic activity, economic and quantity of production of enzyme were appraised. HRP was selected finally. And tyrosinase was also used to contrast. Therefore, the objectives of this study are to:

1) investigate removal rate of phenolic compounds using HRP and tyrosinase; (2) investigate the effect of the chemical additives...
including hydroxybutyl chitosan (HBC), carboxymethyl cellulose (CMC) and chitosan on the efficiency of the catalytic transformation of phenols; and (3) investigate the recovery rate of free enzyme after treatment using HBC or κ-Carrageenan.

2. Materials and Methods

2.1 Materials

HRP was purchased from Biozyme Laborates (South Wales, UK). Tyrosinase (5370 Units/mg, solid) was purchased from Sigma Chemical Company. And all other chemicals were the highest purity available and purchased from Wako Pure Chemicals Co., Japan.

2.2 Phenolic compounds polymerizing reaction

Each of the phenolic compounds polymerizing reaction was carried out at 37°C using phosphate buffer (pH 6.5). The initial concentration of phenol was 500mg/l. After treatment, the supernatants were filtered through 0.45 μm filters and analyzed for phenols concentration by 3-dimensional high-performance liquid chromatography (3D-HPLC). The concentration of phenolic compounds in mixture wastewater (phenol; catechol and substituted phenols) were also analyzed as same procedure.

2.3 Effect of the additives

Each additive (0.5g/l) was added into the treatment. After the treatment, phenol concentration of the samples were analyzed by HPLC. And phenol concentration were analyzed when HBC(0.5~20g/l) or CMC(0.96 ~2.02wt%) was added.

2.4 Recovery rate of the free enzyme

After the phenols polymerizing reaction, HBC(20~30g/l) or κ-Carrageenan(10g/l) was used to recover the free enzyme. The treatment system using HBC was shown in Fig. 1. The recovered enzyme activity was analyzed by UV-1800.

2.5 3D-HPLC analysis

The 3D-HPLC analysis was performed with a Hitachi instrument equipment (LaChrom Elite L-2455). A wakoshi (4.6mm×10mm column) was used. Isocratic solution was performed at a flow rate 1ml/min mobile phase composed of water, and acetonitrole (60:40%; v/v),T=30°C, P_{max}=20MPa.

2.6 HRP activity assay

A modified assay was employed to measure the HRP enzyme activity using phenol, 4-amonoantipyrine (4-AAP) and hydrogen peroxide as substrates. The approach provided all components except enzyme near saturation concentration so that the initial rate of reaction became directly proportional to the amount of enzyme present. The assay mixture contained 250 μl of 48mM 4-AAP, 2500 μl of 20mM phenol, 1250 μl of 0.1M phosphate buffer (pH 6.5) and 1000 μl of enzyme solution. The rate of reaction was measured by monitoring the rate of formation of a non-precipitated product which absorbed light at a peak wavelength of 450nm (UV-1800, Shimadzu).

3. Results and Discussion

3.1 Phenolic compounds polymerizing reaction without additives

The enzymatic activity of HRP and tyrosinase is dependent on pH with a broad optimum over the pH range of 6 to 9. In previous paper[5-6], the optimum conditions of the activity of HRP is 37°C and pH6.5. Table 1 shows that phenolic compounds removal efficiency when each enzyme 4U/ml was added. It can be seen that enzymatic activity of HRP is greater than tyrosinase. And the reaction rate of HRP is also higher than that of tyrosinase.

In actuality, there are some different phenolic compounds in a wastewater. Two models wastewater of phenolic compound mixtures were investigated in this study. For instances group (I) includes phenol, catechol, and chloro-derivatives. Group (II) includes phenol, catechol, and p-substituted phenols. Table 2 shows removal efficiency of phenolic compounds in two groups. Although each polymerizing reaction reacts at the same time, the transformation is different. The exceptional behaviour of p-nitrophenol in group (II) shows that no enzymatic reaction occurred completely. Because the reaction ability of each phenolic compounds is different.
It can be seen that the total quantity of transformation is similar between two groups, because catalytic ability of HRP was not changed.

Table 1

Treatment of Phenols by Enzyme in a Batch Reactor

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Compounds</th>
<th>Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP</td>
<td>Phenol</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Catechol</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>p’-chlorophenol</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2,4-dichlorophenol</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trichlorophenol</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>p’-nitrophenol</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>p’-cresol</td>
<td>64</td>
</tr>
<tr>
<td>Tyrosinase</td>
<td>Phenol</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Catechol</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>p’-chlorophenol</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2,4-dichlorophenol</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trichlorophenol</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>p’-nitrophenol</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p’-cresol</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2

Transformation of Phenols in Mixture Model Wastewater

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Removal (%)</th>
<th>Quantity (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Phenol</td>
<td>16.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Catechol</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>p’-chlorophenol</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>2,4-dichlorophenol</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trichlorophenol</td>
<td>71.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26.00</td>
</tr>
<tr>
<td>II. Phenol</td>
<td>9.0</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>Catechol</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td>p’-chlorophenol</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>p’-nitrophenol</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>p’-cresol</td>
<td>58.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26.93</td>
</tr>
</tbody>
</table>

3.2 Phenolic compounds polymerizing reaction using additives

Fig. 2 shows transformation of phenols in polymerizing reaction using additives. It observed that, the removal efficiency is improved definitively than before, when HBC, HPC, PEG, or gelatin was added. Addition of chitosan or κ· Carrageenan remarkably improved the removal efficiency. But, insoluble polymer did not precipitate very well, when κ· Carrageenan was added (Fig. 3).

Figure 2. Phenol Removal Efficiency Using Additives

Figure 3. Insoluble Precipitates in Polymerizing Reaction

Fig. 4 shows the effect of additives on other phenols removal at 500mg/l initial phenol concentration. The highest removal efficiency is observed when using HBC. When HBC or CMC is added, the viscosity of solution increased. Fig. 5 indicates that the polymerizing reaction would be disrupted if the viscosity of CMC is too high.

Figure 4. Effect of Additives on Treatment
3.3 Recovery rate of the free enzyme

Temperature-responsive polymer, HBC or κ-Carrageenan was used to recover the free enzyme (Fig. 1). About 38% HRP can be recovered by HBC; and 23% by κ-Carrageenan (Fig. 6). The recovery rate is lower than that be expected, because HRP is inactivated by H$_2$O$_2$ (Fig. 7). Use of HBC can recover 79% activated HRP at 40 min after the beginning of the treatment.

4. Conclusion

The enzymatic method successfully removed phenolic compounds from model wastewater. Using additives such as HBC is an option to improve the enzymatic method in economic perspective. Further improvement of the enzymatic method may be achieved by retaining HRP in additives polymer if the enzyme inactivation is sufficiently suppressed. The recover enzyme system using HBC seems to be more economic and potential for practical use.

Reference